

Simplifying Software Access and Sharing of FPGAs in Datacenters

Stelios Mavridis, **Manos Pavlidakis**, Ioannis Stamoulias, Christos Kozanitis, Nikos Chrysos, Christoforos Kachris, Dimitrios Soudris, and Angelos Billas

Challenges for using accelerators in servers

- 1. Difficult to write Host code for single & different accel. type(s)
 - Accelerator code and Host code are currently tightly coupled
 - Results in increased programming effort for application developer
 - Reduced accelerator code reuse
 - Requires detailed programming knowledge for Host & Accelerator side
- 2. Difficult to share the same IP core from multiple apps
 - Typically IP cores are dedicated
 - <u>But</u> in consolidated servers sharing is important
- 3. Difficult to use multiple accelerators from one app
 - Host code has to change significantly

VineTalk: Software layer between FPGAs & apps

- VineTalk addresses the pre mentioned issues
 - Host code and FPGA code is decoupled
 - Host code is written once, regardless of the accelerator number & type
 - Provides IP core sharing from multiple applications
 - Apps can use multiple/heterogeneous accelerators
- VineTalk supports VMs, Native, and Containers
- VineTalk consists of two main components
 - Transport protocol
 - Extensive scheduling
- VineTalk virtualizes accelerators

VINEYARD

VineTalk's design

• Transport layer

- Implemented as shared memory
 - Enables VMs & Containers
 - Faster than network approaches
- Virtual Accelerators
 - Implemented as task queues
 - Allows FPGA sharing
- Accelerator Controller
 - Schedules multiple apps over a single accelerator
 - Schedules one app over multiple accelerators
 - Schedules one app over heterogeneous accelerators

Preliminary evaluation

- Perform risk analysis
 - With three financial apps with & without VineTalk
 - Black&Scholes, Black-76, and Bionomial
- Question 1: Is VineTalk expensive ?
 - Up to 4% slower compared to native execution
- Question 2: Is FPGA sharing expensive ?
 - With 2 concurrent apps
 - 2% less task rate compared to 1 app running standalone
- Programming effort
 - Decrease the lines of Host code up to 30% compared to native
 - Accelerator specific code moved to Accelerator Controller

Summary

- VineTalk virtualizes heterogeneous accels. in consolidated servers
 - Using one efficient transport layer and an Accelerator Controller
 - The Accelerator Controller provides task scheduling and FPGA sharing
- $\circ~$ Benefits of VineTalk
 - 1. Accelerator sharing
 - 2. Host code is written once
 - 3. Apps can be executed in a Single/Multiple/Heterogeneous accelerators
 - 4. Apps can run in VMs, Natively, and in Containers
- Our preliminary results show low overhead in simple case

Thank you! Questions?