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GPU sharing
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 Leads to SLA violation

U
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• Today, GPUs are offered in a dedicated manner by cloud providers

• To ensure SLA for user-facing tasks
• User-facing task’s response time < SLA

• But GPUs are underutilized

• State of the art approaches increase GPU utilization 

• By using idle GPUs for batch tasks
• Batch task does not have strict response time requirements

 User-facing task can meet its SLA target

• But batch tasks execution time ≥ SLA

• If batch task execution time adequately < SLA 
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Preemption can reduce SLA violations
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• GPU preemption approaches incur variable & high latency:

1.  Rely on existing thread blocks or slice tasks to provide preemption points
• Rare preemption points  high latency
• Frequent preemption points  increase task execution time

2. Store stopped task’s state
• In GPU memory memory monopolization
• In Host memory  variable latency

• High preemption latency affects violations 
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We need preemption mechanism with constant & low latency

 Much shorter than the SLA



TReM: Task Revocation Mechanism for GPUS
With constant & low latency 
• To achieve that TReM:

• Stops a task at any point of its execution  low & constant latency
• Does not store the state of the revoked task  constant latency
• Replays the revoked task later

• To stop a task TReM uses 3 mechanisms
1. CUDA dynamic parallelism
2. CUDA unified memory
3. asm(trap)

• We examine the effectiveness of TReM on SLA violations
• Using different scheduling policies
• Focusing on long running batch tasks (i.e. execution time relative to SLA)
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Why TReM?
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Desired features FLEP GPES Pascal 
Preemption

Chimera TReM

Preemption/Revocation P P P P R

Provides Low & Constant preemption 
latency - - - + +

Handles tasks with large memory footprint - - + + +
Does not need kernel source code - - + - +

Supports all NVIDIA GPUs + + - + +
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TReM Design Overview



TReM components
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Apps

Overall system with TReM
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Start a kernel with TReM
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 Using CUDA Dynamic Parallelism



Start a kernel with TReM
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Revoke a kernel with TReM
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Revoke a kernel with TReM
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TReM breakdown
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• Revocation time = 22ms
• To stop the task: 5 ms
• To start the new task: 17 ms

• Book-keeping time = 75 ms
• Postponed until next batch task
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B • To clear the GPU context: 60ms 
• To replenish the process pool: 15ms



TReM with multiple GPUs
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• Servers today
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• In such setups TReM runs in every GPU
• Have multiple GPUs & run multiple applications

• To handle multiple GPUs & apps
• We design & implement a runtime framework

• The runtime framework
• Instructs TReM when to revoke a kernel
• Minimize lost work due to revocations
• Selects which task queue to serve according to a scheduling policy

• We use two scheduling policies:
• (Baseline) Priority: Prioritizes user-facing over batch tasks
• Elastic: Packs user-facing tasks in a GPU  do not violate the SLA

• Devotes the remaining GPUs to batch tasks



Priority vs Elastic scheduling policy
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• Does not account the user-facing latency
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• Assigns the minimum number of GPUs 
• As such user-facing response time < SLA
• In our example 1xGPU is sufficient
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• Assigns all GPUs to user-facing
• As many as the number of user-facing tasks

• Postpones the execution of batch tasks
• Provides the remaining GPUs to batch tasks



Priority vs Elastic scheduling policy
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Priority Elastic

• Wait for the currently executing user-facing

• Assigns the GPUs to new user-facing

• Postpones the execution of batch tasks
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• When the user-facing load increases
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sendpop

• Elastic assigns more GPUs for user-facing
• In our example 1xGPU is sufficient

UUUU

• Batch tasks are postponed



Incorporating TReM in Priority & Elastic
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Priority revokes both GPUs
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Incorporating TReM in Priority & Elastic
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Experimental Methodology



Testbed
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• We use a server with:
• Intel Xeon CPU E5-2630 v3 running at 2.40GHz
• 128GB of DRAM
• 4xNVIDIA P1000 GPUs (Pascal Architecture)

• Each GPU
• Has 640 CUDA cores & 4GB of GDDR5
• Connected with a 16 lanes PCIe gen3

• We use CUDA 9.0 to implement TReM



Workloads
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• Micro-benchmarks 
• With a few tasks
• To measure the overheads of TReM

• Datacenter-inspired synthetic workloads
• With thousands of user-facing & batch tasks
• To measure the performance of the overall system

• We use tasks from Rodinia 3.2 and NVIDIA SDK  

Tasks
AVG Exec. Time

(ms)
Memory Footprint 

(MB)

Euclid 8 12

NW 38 44

Pathfinder 68 74

Monte Carlo 150 68

Lava MD 46000 1069

Hot Spot 130696 423

Gaussian 311000 1120

• SLA = 200ms

• Tasks with execution time < SLA  user-facing
• Tasks with execution time >> SLA  batch

user-facing

batch



Datacenter workloads
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• We implement a workload generator
• Mimics traces from Google and Alibaba
• Takes 3 parameters:

1. Job duration  Pareto distribution
2. Job inter-arrival time  Exponential distribution
3. User-facing to batch job ratio  50:50 (Alibaba), 80:20 (Google)

• We generate two workloads: W1 & W2

Workload specs W 1 W 2

User-facing to batch ratio 50:50 80:20

User-facing job duration (mean) 5s

Batch job duration (mean) 600s

Total # of jobs 30

Total # of tasks 1560
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• We implement a workload generator
• Mimics traces from Google and Alibaba
• Takes 3 parameters:

1. Job duration  Pareto distribution
2. Job inter-arrival time  Exponential distribution
3. User-facing to batch job ratio  50:50 (Alibaba), 80:20 (Google)

• We generate two workloads: W1 & W2

• To emulate different Load
• We use a scaling factor on the base inter-arrival mean
• The scaling factor ranges from 0.25 (low load) to 2.0 (oversubscription)

• Load 0.25 can fully utilize one GPU
• Load 1 can fully utilize four GPUs

Workload specs W 1 W 2

User-facing to batch ratio 50:50 80:20

User-facing job duration (mean) 5s

Batch job duration (mean) 600s

Total # of jobs 30

Total # of tasks 1560

Load 0.25 - 2
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Experimental Analysis



SLA violations
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W1: 50% user-facing – 50% batch W2: 80% user-facing – 20% batch

≈ 8%

≈ 10%



Lost work due to revocations
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• Both policies minimize wasted time
• Revoke more recently started tasks  

• Elastic minimize more wasted time
• Uses minimum # GPUs for user-facing



PDF with batch job duration
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Compare revocation mechanisms
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Latency (ms)

Kernel dimensions
Total

threads
Process 

kill
asm(exit) asm(trap)

Kernel <16,16> 256 3000 130 22

Kernel <32,32> 1024 3000 195 22

Kernel <64,64> 4096 3000 600 22

Kernel <128,128> 16384 3000 1430 22

TReM: A Task Revocation Mechanism for GPUs HPCC 2020

+ Constant latency

- High latency

Process kill:
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- Variable latency

asm(exit):

- High latency

Compare revocation mechanisms
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Latency (ms)

Kernel dimensions
Total

threads
Process 

kill
asm(exit) asm(trap)

Kernel <16,16> 256 3000 130 22

Kernel <32,32> 1024 3000 195 22

Kernel <64,64> 4096 3000 600 22

Kernel <128,128> 16384 3000 1430 22

TReM: A Task Revocation Mechanism for GPUs HPCC 2020

+ Constant latency

+ Low latency

asm(trap):

TReM uses asm(trap)

Compare revocation mechanisms
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Conclusions



TReM: A Task Revocation Mechanism for GPUs
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• To provide QoS under GPU sharing 
• We need a preemption or revocation mechanism

• BUT this mechanism should have constant and low latency (<<SLA)
• TReM is a Task Revocation Mechanism

• Stops a kernel at any point of its execution without storing state
• Replays the revoked task later

• TReM revocation latency is 22ms
• TReM + Elastic 

• Ensure the SLA for 8% more user-facing tasks compared to Priority
• Limits the lost work due to revocations to 2,1% on average 
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Thank you

Manos Pavlidakis
manospavl@ics.forth.gr

Questions?



SLA violations
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W1: 50% user-facing – 50% batch W2: 80% user-facing – 20% batch

≈ 0,8%
≈ 0.4%


