.'I’
,i v
P

INSTITUTE OF COMPUTER SCIENCE

TReM: A Task Revocation Mechanism for

GPUs

Manos Pavlidakis'2 Stelios Mavridis' Nikos Chrysos! Angelos Bilas'?

manospavl@ics.forth.gr mavridis@ics.forth.gr nchrysos@ics.forth.gr bilas@ics.forth.gr

"Institute of Computer Science, Foundation for Research and Technology - Hellas, Greece
2 Computer Science Department, University of Crete, Greece

GPU sharing

* Today, GPUs are offered in a dedicated manner by cloud providers

* Toensure SLA foruser-facing tasks
« User-facing task’'s response time < SLA

« But GPUs are underutilized

e State of the art approaches increase GPU utilization B USI:_A

» By usingidle GPUs for batch tasks g —s
« Batch task does not have strict response time requirements

* |f batch task execution time adequately < SLA SLA

> User-facing task can meet its SLA target B | :U

* But batch tasks execution time > SLA Time —

> LLeads to SLA violation

TReM: A Task Revocation Mechanism for GPUs HPCC 2020 2

Preemption can reduce SLA violations

» GPU preemption approaches incur variable & high latency:

1. Rely on existing thread blocks or slice tasks to provide preemption points

« Rare preemption points = high latency
* Frequent preemption points = increase task execution time

SLA
2. Store stopped task's state -_:
* In GPU memory - memory monopolization Time ‘ —>
* In Host memory - variable latency

Stop signal
* High preemption latency affects violations

TReM: A Task Revocation Mechanism for GPUs HPCC 2020 3

Preemption can reduce SLA violations

» GPU preemption approaches incur variable & high latency:

1. Rely on existing thread blocks or slice tasks to provide preemption points
« Rare preemption points = high latency

 Frequent preemption points = increase task execution time ! Pr;etzwnp;;oni
' SLA
2. Store stopped task’s state !
* In GPU memory = memory monopolization Time ‘ —>
* In Host memory - variable latency
Stop signal
* High preemption latency affects violations lask stopped

TReM: A Task Revocation Mechanism for GPUs HPCC 2020 3

Preemption can reduce SLA violations

» GPU preemption approaches incur variable & high latency:

1. Rely on existing thread blocks or slice tasks to provide preemption points

« Rare preemption points = high latency

 Frequent preemption points = increase task execution time | Pr;etzwnp;;oni
! ' SLA
2. Store stopped task’s state U.
* In GPU memory = memory monopolization Time ‘ —>
* In Host memory - variable latency
Stop signal
* High preemption latency affects violations lask stopped

d We need preemption mechanism with constant & low latency
= Much shorter than the SLA

TReM: A Task Revocation Mechanism for GPUs HPCC 2020 3

TReM: Task Revocation Mechanism for GPUS

v With constant & low latency

* Toachieve that TReM:
« Stops a task at any point of its execution = low & constant latency
» Does not store the state of the revoked task = constant latency
* Replays the revoked task later

 Tostopatask TReM uses 3 mechanisms
1. CUDA dynamic parallelism
2. CUDA unified memory
3. asm(trap)

* We examine the effectiveness of TReM on SLA violations

« Using different scheduling policies
* Focusing onlong running batch tasks (i.e. execution time relative to SLA)

TReM: A Task Revocation Mechanism for GPUs HPCC 2020

Why TReM?
’ ¥

Desired features FLEP | GPES Pascal Chimera | TReM
Preemptlon

Preemption/Revocation | P P P F P! ' R |

| |

, — 1 1 | :
Provides Low & Constant preemption o - - - + L+
latency b i it l |

I I

Handles tasks with large memory footprint [!'= = | - - '+
| |

Does not need kernel source code - = + L -+

| |

Supports all NVIDIA GPUs + + L - + 1+

TReM: A Task Revocation Mechanism for GPUs HPCC 2020 5

TReM Design Overview

TReM components

Host GPU
1 - T T W Tap_pe_r ____________ -;
: e kernel Actual kernel I
| Fool C \ cl E E @ @,
|
il cl € [©@ [@ [@]"
| |LPZ '
, C C C C C C I
|
]
Host memory Unified memory GPU memory '
| Revoke flag Context||Context :
| p] p2 :
_________________ |

TReM: A Task Revocation Mechanism for GPUs HPCC 2020 7

Overall system with TReM

Host GPU
[B W ?ap_peTr ____________ L
Task Runtime | Process kernel Actual kernel

SEE Queues framework: Pool C \ C C C C C

|
(o0 S| |2 cl € [€ [€ [[c
&) | || P2

: C C C C C C

|

Host memory Unified memory GPU memory
| Revoke flag Context ||[Context
| pl p2

TReM: A Task Revocation Mechanism for GPUs HPCC 2020 8

Start a kernel with TReM

» Using CUDA Dynamic Parallelism

Host GPU
I B W Taﬁpe_r ____________ L
Task Runtime | e — kernel Actual kernel

|

Apps hOueues framework Pool C \ cl [cl Tcl [c C
pus ,

(c0—> LR c] [€ [E € [E [c
(:>—>| p2

| ¢l [€ [e] e M [e

I

Host memory Unified memory GPU memory
| Revoke flag Context||Context
| p p2
] TReM

TReM: A Task Revocation Mechanism for GPUs HPCC 2020

Start a kernel with TReM

Host GPU

| Wrapper issue
Task Runtime 'Process kerlnel Actuau,kernel

pUShCJueues framework , Pool yﬁc\\/ C I C C C C C
Lo ’ T~ polls
Q—) L \D) Se“lh pl C pOIIIC C C C C
(»—)| ®
C

L p2
C C C C C

Apps

Host memory Unified memory GPU memory
I Revoke flag < Context [|Context
| pl p2

TReM: A Task Revocation Mechanism for GPUs HPCC 2020 9

Revoke a kernel with TReM

» Using asm(trap)

Host GPU
detect kernel stop 1 _WTaEpe_r _a;m(_tra_p) ———————— -
ADDS Task Runflime I Process kefnel Actuau,kernel
pp Queues framework Pool C I C S = - =

kill
Lo g| detect {1 L@ [6

C C C C C C

Host memory . Unified memory GPU memory
| N Revokeflag < 09’50\6 ontext
| | \}(\ p2

. TReM

O o

|
|
|
&

Ox

TReM: A Task Revocation Mechanism for GPUs HPCC 2020

Revoke a kernel with TReM

Host GPU

| Wrapper issue

Task Runtime | Process kerlnel Actuau,kernel

SEE Queues framework: Pool C I C C C C C

\)
\J
U et % — poll=
5 & &@MRKC”PC t| O [[
o oo task
O C

C C C C C

Host memory Unified memory GPU memory
| Revokeflag < G ﬁ%ntext
| » p2

TReM: A Task Revocation Mechanism for GPUs HPCC 2020

10

TReM breakdown

Time >
! Book-keeping :
. ! =75ms !
Revocation ¢ '
latency ! New |
Clear context I
(__)-22ms : =60ms process:
1

q UllUle---=----- >&1om
| | ‘P

Time 1 ! l l l

Set Start Clear Replenish Restart
Revoke user context process batch

flag facing

TReM: A Task Revocation Mechanism for GPUs

e Revocationtime =22ms
* Tostop the task: 5ms
 Tostart the new task: 17ms

 Book-keeping time =75 ms
« Postponed until next batch task
e Toclear the GPU context: 60ms
e Toreplenish the process pool: 15ms

HPCC 2020 18

TReM with multiple GPUs

Task Runtime

e Servers today Apps framework TReM
ueues — jmmm———— .
* Have multiple GPUs & run multiple applications 2 : |

: 1 GPU

* Insuch setups TReM runsinevery GPU e :__ __:

* To handle multiple GPUs & apps @ TReM
* We design & implement a runtime framework | — — 1

|

* The runtime framework & E :_ :

* |Instructs TReM when to revoke a kernel

* Minimize lost work due to revocations

« Selects which task queue to serve according to a scheduling policy
 We use two scheduling policies:

* (Baseline) Priority: Prioritizes user-facing over batch tasks

» Elastic: Packs user-facing tasks in a GPU - do not violate the SLA

* Devotes the remaining GPUs to batch tasks

HPCC 2020 n

TReM: A Task Revocation Mechanism for GPUs

Priority vs Elastic scheduling policy

Priority
Task Scheduler
Queues —_—

send

* Does not account the user-facing latency

 Assigns all GPUs to user-facing
 As many as the number of user-facing tasks

* Postpones the execution of batch tasks

TReM: A Task Revocation Mechanism for GPUs

Elastic
Task goheduler
Queues —
) pop é_send GPU

[B)(B)(B)R==:

send

S

——/

* Assigns the minimum number of GPUs
« Assuch user-facing response time < SLA

* Inour example 1xGPU is sufficient

* Provides the remaining GPUs to batch tasks

HPCC 2020

12

Priority vs Elastic scheduling policy

Priority Elastic
Task Scheduler fask Scheduler
Queues — Queues —

send, 550] e

send

 When the user-facing load increases

« Wait for the currently executing user-facing Elastic assigns more GPUs for user-facing
- Assigns the GPUs to new user-facing * |n our example 1xGPU is sufficient
 Postpones the execution of batch tasks * Batch tasks are postponed

TReM: A Task Revocation Mechanism for GPUs HPCC 2020 12

Incorporating TReMin Priority & Elastic

Priority Elastic

Task gcheduler TReM Task gcheduler TReM
Queues —— e mmm oo i Queues —— e mmm e }
|
E_sendu : %_sendl :
QOQ L o e e e - — — I QOQ L e o e e — — —

TReM TReM
|———————— = |jm——————— -
(0] pop I
e 2 o =[] [eru]) @016 — < = [p1] [cru]!
L o o e e - — I L o e e e - — — I

v Initially there are no user-facing tasks
v All GPUs are provided to batch

TReM: A Task Revocation Mechanism for GPUs HPCC 2020 13

Incorporating TReMin Priority & Elastic

Priority Elastic
Task — geheduler TReM Task — geheduler TReM
Queues —— e mmm oo i Queues —— e mmm e }
|
00y 2 4] [eru] 00 < %] [ory]
R I | R L e e m — = —
Q Q
TReM TReM
|- === = = |jm————— - =
0 pop l
Egéﬂiﬂzl GPU | —>§ﬂ1>', GPU |
L e e e e m - — | b e e e m — — - :
v Initially there are no user-facing tasks
v All GPUs are provided to batch
v" A burst of user-facing arrives
> Priority revokes both GPUs | > Elastic revokes one GPU

TReM: A Task Revocation Mechanism for GPUs HPCC 2020 13

Incorporating TReMin Priority & Elastic

Priority Elastic
ououes Schedder TRe ououes Schedder TRe
oy o] [eeu) Q-2 < 24w [ceu])
I N (N I SR
TReM __IFEe_M____l
ﬂd_i 6PU |, ﬂ%ﬂﬁ, PU |,
L (2) ==

v Initially there are no user-facing tasks
v All GPUs are provided to batch

v" A burst of user-facing arrives

» Both GPUs are provided to user-facing | » 1GPU is provided to user-facing

TReM: A Task Revocation Mechanism for GPUs HPCC 2020 13

- Xperimental Methodology

Testbed

 We use a server with:
* Intel Xeon CPU E5-2630 v3 running at 2.40GHz
* 128GB of DRAM
« 4xNVIDIA P1000 GPUs (Pascal Architecture)

 Each GPU
 Has 640 CUDA cores & 4GB of GDDRb
 Connected with a 16 lanes PCle gen3

« We use CUDA 9.0 to implement TReM

TReM: A Task Revocation Mechanism for GPUs HPCC 2020 15

AVG Exec. Time | Memory Footprint
Workloads

e Micro-benchmarks Pathfinder “_

e With afew tasks user-facing Monte Carlo
e Tomeasure the overheads of TReM batch Lava MD

» Datacenter-inspired synthetic workloads 130636
« With thousands of user-facing & batch tasks 511000 1120

 To measure the performance of the overall system

e We use tasks from Rodinia 3.2 and NVIDIA SDK

« SLA=200ms
» Tasks with execution time < SLA - user-facing

 Tasks with execution time >> SLA - batch

TReM: A Task Revocation Mechanism for GPUs HPCC 2020 16

Datacenter workloads

Batch job duration (mean)
« We implement a workload generator Total # of jobs D
 Mimicstraces from Google and Alibaba Total # of tasks 1560

 Takes 3 parameters:
1. Job duration - Pareto distribution
2. Jobinter-arrival time = Exponential distribution
3. User-facing to batch job ratio = 50:50(Alibaba), 80:20 (Google)

 We generate two workloads: W1 & W2

TReM: A Task Revocation Mechanism for GPUs HPCC 2020 17

Datacenter workloads —

« We implement a workload generator Total # of jobs D
 Mimicstraces from Google and Alibaba Total # of tasks 1560
+ Takes 3 parameters:

1. Job duration = Pareto distribution

2. Jobinter-arrival time = Exponential distribution
3. User-facing to batch job ratio = 50:50(Alibaba), 80:20 (Google)

 We generate two workloads: W1 & W2

* Toemulate different Load
* We use a scaling factor on the base inter-arrival mean

* The scaling factor ranges from 0.25(low load) to 2.0 (oversubscription)
* Load 0.25 can fully utilize one GPU
* Load 1can fully utilize four GPUs

TReM: A Task Revocation Mechanism for GPUs HPCC 2020 17

- Xperimental Analysis

SLA violations

—-e-— Priority --m-- Priority+TReM
Elastic —+— Elastic+TReM
100

)
&

=8%

=10%

O WOWOOOOOOO
O NWRARUIO O

(00)
O

Tasks meeting SLA (%

m .
& gg' 3 a8
Q"9 ¢Q 19 A0 19 ¢«Q 1% 0 T
S ERE RSN o2 NI R 3R 12
Load Load
W1: 50% user-facing - 50% batch W2: 80% user-facing - 20% batch

TReM: A Task Revocation Mechanism for GPUs HPCC 2020 19

Lost work due to revocations

3.5 =Elastic+TReM ‘
3

o » Both policies minimize wasted time
® Priority+TRe

0 =i

g 2.5 * % * Revoke more recently started tasks
g - — B
. 4 =8 = =B » Elastic minimize more wasted time
o 15 7% = = =1 * Uses minimum # GPUs for user-facing
2 i = — = POl
O =" — — N
=1 2@ E@ =11 =0

05 =@ = = =

1 2

TReM: A Task Revocation Mechanism for GPUs HPCC 2020 20

PDF with batch job duration

350
300 = Elastic

250 g Elastic+tTReM
200

150
100
50 8

30%

Time to completion (s)

0 EES

30 50 70 85 100
Job Percentile (%)

TReM: A Task Revocation Mechanism for GPUs HPCC 2020 21

Compare revocation mechanisms

ProcessKkill:
+ Constant latency
- High latency

TReM: A Task Revocation Mechanism for GPUs HPCC 2020 22

Compare revocation mechanisms

Latency (ms)

: : Process :
Kernel dimensions asm(trap)

Kernel <16,16> 3000

asm(exit):
Kernel <32,32> 3000 :
- Variable latency
Kernel <64,64> 3000 “ - High latency
Kernel <128,128> 3000 11430

TReM: A Task Revocation Mechanism for GPUs HPCC 2020 22

Compare revocation mechanisms

Latency (ms)

: : P :
Kernel dimensions rcl)<(i:|(|ess asm(trap) v'TReM uses asm(trap)

95

asm(trap):
+ Constant latency

+ Low latency

Kernel <64,64> 4096 3000 “

22
Kernel <32,32> 22
22
Kernel <128,128> 22

TReM: A Task Revocation Mechanism for GPUs HPCC 2020 22

SLA violations vs. Revocation latency

—Elastic+TReM

Tasks violating SLA (%)
P N WN OO N 0 ©

o

O ® O O QO
L & S PN

Revocation latency (ms)

TReM: A Task Revocation Mechanism for GPUs HPCC 2020 26

Conclusions

TReM: A Task Revocation Mechanism for GPUs

e To provide QoS under GPU sharing

 We need a preemption or revocation mechanism
« BUT this mechanism should have constant and low latency (<<SLA)

« TReMis a Task Revocation Mechanism
e Stops a kernel at any point of its execution without storing state
* Replays the revoked task later

 TReM revocation latency is 22ms
* TReM + Elastic

* Ensure the SLA for 8% more user-facing tasks compared to Priority
« Limits the lost work due to revocations to 2,1% on average

24

TReM: A Task Revocation Mechanism for GPUs HPCC 2020

Thank you

Ouestions?

Manos Pavlidakis
manospavl@ics.forth.gr

SLA violations

—-e-— Priority --#-- Priority+TReM
Elastic —&— Elastic+TReM
100 100+
‘o 99 - \ = —_ 99
> 981 1\ oy X 98
] \ =0.4%<= |
oL < 97 = 0,8%
5 96 | - 96 e
o) 95 "'M..x O 951
€ 94- Nl < 94-
@ 93- e 1 2 931
92- Q 92-
& 91 € 91
~ 90- L 90-
© 89 © 89
5 015 49 15 o 15 <8 19 o L iryrererarsrarses
0002329130723 53123 0 oS 2RSYI N 2 R 13 °
Load Load

W1: 50% user-facing - 50% batch W2: 80% user-facing - 20% batch

TReM: A Task Revocation Mechanism for GPUs HPCC 2020 19

