
TReM: A Task Revocation Mechanism for
GPUs

1 Institute of Computer Science, Foundation for Research and Technology - Hellas, Greece
2 Computer Science Department, University of Crete, Greece

manospavl@ics.forth.gr mavridis@ics.forth.gr nchrysos@ics.forth.gr bilas@ics.forth.gr

Manos Pavlidakis1,2 Stelios Mavridis1 Nikos Chrysos1 Angelos Bilas1,2

GPU sharing

2

 Leads to SLA violation

U

TReM: A Task Revocation Mechanism for GPUs HPCC 2020

• Today, GPUs are offered in a dedicated manner by cloud providers

• To ensure SLA for user-facing tasks
• User-facing task’s response time < SLA

• But GPUs are underutilized

• State of the art approaches increase GPU utilization

• By using idle GPUs for batch tasks
• Batch task does not have strict response time requirements

 User-facing task can meet its SLA target

• But batch tasks execution time ≥ SLA

• If batch task execution time adequately < SLA

B

SLA

Time

Time

SLA

B U

Preemption can reduce SLA violations

3

• GPU preemption approaches incur variable & high latency:

1. Rely on existing thread blocks or slice tasks to provide preemption points
• Rare preemption points  high latency
• Frequent preemption points  increase task execution time

2. Store stopped task’s state
• In GPU memory memory monopolization
• In Host memory  variable latency

• High preemption latency affects violations

Time

SLA
B

Stop signal

TReM: A Task Revocation Mechanism for GPUs HPCC 2020

Preemption can reduce SLA violations

3

• GPU preemption approaches incur variable & high latency:

1. Rely on existing thread blocks or slice tasks to provide preemption points
• Rare preemption points  high latency
• Frequent preemption points  increase task execution time

2. Store stopped task’s state
• In GPU memory memory monopolization
• In Host memory  variable latency

• High preemption latency affects violations

Time

SLA
B

Stop signal

TReM: A Task Revocation Mechanism for GPUs HPCC 2020

Task stopped

B

Preemption
latency

Preemption can reduce SLA violations

3

• GPU preemption approaches incur variable & high latency:

1. Rely on existing thread blocks or slice tasks to provide preemption points
• Rare preemption points  high latency
• Frequent preemption points  increase task execution time

2. Store stopped task’s state
• In GPU memory memory monopolization
• In Host memory  variable latency

• High preemption latency affects violations

Time

SLA
B

Stop signal

TReM: A Task Revocation Mechanism for GPUs HPCC 2020

Task stopped

B

Preemption
latency

U

We need preemption mechanism with constant & low latency

 Much shorter than the SLA

TReM: Task Revocation Mechanism for GPUS
With constant & low latency
• To achieve that TReM:

• Stops a task at any point of its execution  low & constant latency
• Does not store the state of the revoked task  constant latency
• Replays the revoked task later

• To stop a task TReM uses 3 mechanisms
1. CUDA dynamic parallelism
2. CUDA unified memory
3. asm(trap)

• We examine the effectiveness of TReM on SLA violations
• Using different scheduling policies
• Focusing on long running batch tasks (i.e. execution time relative to SLA)

TReM: A Task Revocation Mechanism for GPUs HPCC 2020 4

Why TReM?

5

Desired features FLEP GPES Pascal
Preemption

Chimera TReM

Preemption/Revocation P P P P R

Provides Low & Constant preemption
latency - - - + +

Handles tasks with large memory footprint - - + + +
Does not need kernel source code - - + - +

Supports all NVIDIA GPUs + + - + +

TReM: A Task Revocation Mechanism for GPUs HPCC 2020

8

TReM Design Overview

TReM components

7TReM: A Task Revocation Mechanism for GPUs HPCC 2020

Host GPU

Host memory GPU memory

C C C C C C

C C C C C C

C C C C C C

Wrapper
kernel Actual kernel

Unified memory
Context

p2
Revoke flag Context

p1

Process
Pool

p1

p2

TReM

Apps

Overall system with TReM

8

Host GPU

Host memory GPU memory

C C C C C C

C C C C C C

C C C C C C

Wrapper
kernel Actual kernel

Unified memory
Context

p2
Revoke flag Context

p1

TReM

Task
Queues

Process
Pool

p1

p2

Runtime
framework

TReM: A Task Revocation Mechanism for GPUs HPCC 2020

Start a kernel with TReM

9

Host GPU

Host memory GPU memory

Process
Pool

p1

p2

C C C C C C

C C C C C C

C C C C C C

Wrapper
kernel Actual kernel

Unified memory
Context

p2
Revoke flag Context

p1

TReM

Task
Queues

push

Apps

TReM: A Task Revocation Mechanism for GPUs HPCC 2020

Runtime
framework

 Using CUDA Dynamic Parallelism

Start a kernel with TReM
Host GPU

Host memory GPU memory

Process
Pool

p1

p2

C C C C C C

C C C C C C

C C C C C C

Wrapper
kernel Actual kernel

Unified memory
Context

p2
Revoke flag Context

p1

TReM

Task
Queues

push

issue

poll

Apps

TReM: A Task Revocation Mechanism for GPUs HPCC 2020

p1

Context
p1

9

Runtime
framework

Revoke a kernel with TReM

10

Host GPU

Host memory GPU memory

Process
Pool

p1

p2

C C C C C C

C C C C C C

C C C C C C

Wrapper
kernel Actual kernel

Unified memory
Context

p2
Revoke flag Context

p1

TReM

Apps
Task

Queues

asm(trap)

detect kill

detect kernel stop

TReM: A Task Revocation Mechanism for GPUs HPCC 2020

Context
p1

Runtime
framework

 Using asm(trap)

Revoke a kernel with TReM
Host GPU

Host memory GPU memory

Process
Pool

p1

C C C C C C

C C C C C C

C C C C C C

Wrapper
kernel Actual kernel

Unified memory
Context

p2
Revoke flag Context

p1

TReM

Apps
Task

Queues

Context
p2

issue

p2p2

TReM: A Task Revocation Mechanism for GPUs HPCC 2020

poll

10

Runtime
framework

TReM breakdown

18TReM: A Task Revocation Mechanism for GPUs HPCC 2020

• Revocation time = 22ms
• To stop the task: 5 ms
• To start the new task: 17 ms

• Book-keeping time = 75 ms
• Postponed until next batch task

Time

B

Time

Set
Revoke

flag

B

Start
user

facing

U U

Revocation
latency
=22ms

U U

Replenish
process

Clear context
=60ms

New
process
=15ms

Book-keeping
=75ms

Clear
context

Restart
batch

B • To clear the GPU context: 60ms
• To replenish the process pool: 15ms

TReM with multiple GPUs

11

• Servers today

TReM: A Task Revocation Mechanism for GPUs HPCC 2020

Runtime
framework TReM

p1

TReM

p1

Task
Queues

GPU

GPU

Apps

• In such setups TReM runs in every GPU
• Have multiple GPUs & run multiple applications

• To handle multiple GPUs & apps
• We design & implement a runtime framework

• The runtime framework
• Instructs TReM when to revoke a kernel
• Minimize lost work due to revocations
• Selects which task queue to serve according to a scheduling policy

• We use two scheduling policies:
• (Baseline) Priority: Prioritizes user-facing over batch tasks
• Elastic: Packs user-facing tasks in a GPU  do not violate the SLA

• Devotes the remaining GPUs to batch tasks

Priority vs Elastic scheduling policy

12

Scheduler

pop

send

send

Task
Queues

GPU

GPUB

UU

B B

Priority Elastic

• Does not account the user-facing latency

Scheduler

pop send

Task
Queues

GPU

GPUB

UU

B B sendpop

• Assigns the minimum number of GPUs
• As such user-facing response time < SLA
• In our example 1xGPU is sufficient

TReM: A Task Revocation Mechanism for GPUs HPCC 2020

• Assigns all GPUs to user-facing
• As many as the number of user-facing tasks

• Postpones the execution of batch tasks
• Provides the remaining GPUs to batch tasks

Priority vs Elastic scheduling policy

12

Scheduler

pop

send

send

Task
Queues

GPU

GPUB

UU

B B

Priority Elastic

• Wait for the currently executing user-facing

• Assigns the GPUs to new user-facing

• Postpones the execution of batch tasks

Scheduler

pop send

Task
Queues

GPU

GPUB

UU

B B

• When the user-facing load increases

TReM: A Task Revocation Mechanism for GPUs HPCC 2020

sendpop

• Elastic assigns more GPUs for user-facing
• In our example 1xGPU is sufficient

UUUU

• Batch tasks are postponed

Incorporating TReM in Priority & Elastic

13

Scheduler

pop send

send

Task
Queues

TReM

GPUp1

TReM

GPUp1B B B

Priority Elastic

 Initially there are no user-facing tasks
 All GPUs are provided to batch

Scheduler

pop send

send

Task
Queues

TReM

GPUp1

TReM

GPUp1B B B

TReM: A Task Revocation Mechanism for GPUs HPCC 2020

13

Scheduler

pop send

send

Task
Queues

TReM

GPUp1

TReM

GPUp1B B B

Priority Elastic

Priority revokes both GPUs

 Initially there are no user-facing tasks
 All GPUs are provided to batch

A burst of user-facing arrives

Scheduler

pop send

send

Task
Queues

TReM

GPUp1

TReM

GPUp1B B B

UU UU

Elastic revokes one GPU

TReM: A Task Revocation Mechanism for GPUs HPCC 2020

Incorporating TReM in Priority & Elastic

13

Scheduler

pop

send

send

Task
Queues

TReM

GPUp1

TReM

GPUp1B

UU

B B

Priority Elastic

Both GPUs are provided to user-facing

 Initially there are no user-facing tasks
 All GPUs are provided to batch

A burst of user-facing arrives

Scheduler

pop send

send

Task
Queues

TReM

GPUp1

TReM

GPUp1B B B

UU

 1 GPU is provided to user-facing

pop

TReM: A Task Revocation Mechanism for GPUs HPCC 2020

Incorporating TReM in Priority & Elastic

22

Experimental Methodology

Testbed

15TReM: A Task Revocation Mechanism for GPUs HPCC 2020

• We use a server with:
• Intel Xeon CPU E5-2630 v3 running at 2.40GHz
• 128GB of DRAM
• 4xNVIDIA P1000 GPUs (Pascal Architecture)

• Each GPU
• Has 640 CUDA cores & 4GB of GDDR5
• Connected with a 16 lanes PCIe gen3

• We use CUDA 9.0 to implement TReM

Workloads

16TReM: A Task Revocation Mechanism for GPUs HPCC 2020

• Micro-benchmarks
• With a few tasks
• To measure the overheads of TReM

• Datacenter-inspired synthetic workloads
• With thousands of user-facing & batch tasks
• To measure the performance of the overall system

• We use tasks from Rodinia 3.2 and NVIDIA SDK

Tasks
AVG Exec. Time

(ms)
Memory Footprint

(MB)

Euclid 8 12

NW 38 44

Pathfinder 68 74

Monte Carlo 150 68

Lava MD 46000 1069

Hot Spot 130696 423

Gaussian 311000 1120

• SLA = 200ms

• Tasks with execution time < SLA  user-facing
• Tasks with execution time >> SLA  batch

user-facing

batch

Datacenter workloads

17TReM: A Task Revocation Mechanism for GPUs HPCC 2020

• We implement a workload generator
• Mimics traces from Google and Alibaba
• Takes 3 parameters:

1. Job duration  Pareto distribution
2. Job inter-arrival time  Exponential distribution
3. User-facing to batch job ratio  50:50 (Alibaba), 80:20 (Google)

• We generate two workloads: W1 & W2

Workload specs W 1 W 2

User-facing to batch ratio 50:50 80:20

User-facing job duration (mean) 5s

Batch job duration (mean) 600s

Total # of jobs 30

Total # of tasks 1560

Datacenter workloads

17TReM: A Task Revocation Mechanism for GPUs HPCC 2020

• We implement a workload generator
• Mimics traces from Google and Alibaba
• Takes 3 parameters:

1. Job duration  Pareto distribution
2. Job inter-arrival time  Exponential distribution
3. User-facing to batch job ratio  50:50 (Alibaba), 80:20 (Google)

• We generate two workloads: W1 & W2

• To emulate different Load
• We use a scaling factor on the base inter-arrival mean
• The scaling factor ranges from 0.25 (low load) to 2.0 (oversubscription)

• Load 0.25 can fully utilize one GPU
• Load 1 can fully utilize four GPUs

Workload specs W 1 W 2

User-facing to batch ratio 50:50 80:20

User-facing job duration (mean) 5s

Batch job duration (mean) 600s

Total # of jobs 30

Total # of tasks 1560

Load 0.25 - 2

27

Experimental Analysis

SLA violations

19TReM: A Task Revocation Mechanism for GPUs HPCC 2020

W1: 50% user-facing – 50% batch W2: 80% user-facing – 20% batch

≈ 8%

≈ 10%

Lost work due to revocations

20TReM: A Task Revocation Mechanism for GPUs HPCC 2020

0

0.5

1

1.5

2

2.5

3

3.5

0.25 0.5 1 2

W
as

te
d

ti
m

e
(%

)

Load

Elastic+TReM

Priority+TRe
M

0,6%

0,7%

• Both policies minimize wasted time
• Revoke more recently started tasks

• Elastic minimize more wasted time
• Uses minimum # GPUs for user-facing

PDF with batch job duration

21TReM: A Task Revocation Mechanism for GPUs HPCC 2020

0

50

100

150

200

250

300

350

0 15 30 50 70 85 100

Ti
m

e
to

 c
om

pl
et

io
n

(s
)

Job Percentile (%)

Elastic

Elastic+TReM

94%

30%

Compare revocation mechanisms

22

Latency (ms)

Kernel dimensions
Total

threads
Process

kill
asm(exit) asm(trap)

Kernel <16,16> 256 3000 130 22

Kernel <32,32> 1024 3000 195 22

Kernel <64,64> 4096 3000 600 22

Kernel <128,128> 16384 3000 1430 22

TReM: A Task Revocation Mechanism for GPUs HPCC 2020

+ Constant latency

- High latency

Process kill:

22

Latency (ms)

Kernel dimensions
Total

threads
Process

kill
asm(exit) asm(trap)

Kernel <16,16> 256 3000 130 22

Kernel <32,32> 1024 3000 195 22

Kernel <64,64> 4096 3000 600 22

Kernel <128,128> 16384 3000 1430 22

TReM: A Task Revocation Mechanism for GPUs HPCC 2020

- Variable latency

asm(exit):

- High latency

Compare revocation mechanisms

22

Latency (ms)

Kernel dimensions
Total

threads
Process

kill
asm(exit) asm(trap)

Kernel <16,16> 256 3000 130 22

Kernel <32,32> 1024 3000 195 22

Kernel <64,64> 4096 3000 600 22

Kernel <128,128> 16384 3000 1430 22

TReM: A Task Revocation Mechanism for GPUs HPCC 2020

+ Constant latency

+ Low latency

asm(trap):

TReM uses asm(trap)

Compare revocation mechanisms

0

1

2

3

4

5

6

7

8

9

Ta
sk

s
vi

o
la

ti
n

g
SL

A
 (

%
)

Revocation latency (ms)

Elastic+TReM

SLA violations vs. Revocation latency

26TReM: A Task Revocation Mechanism for GPUs HPCC 2020

35

Conclusions

TReM: A Task Revocation Mechanism for GPUs

24
TReM: A Task Revocation Mechanism for GPUs HPCC 2020

• To provide QoS under GPU sharing
• We need a preemption or revocation mechanism

• BUT this mechanism should have constant and low latency (<<SLA)
• TReM is a Task Revocation Mechanism

• Stops a kernel at any point of its execution without storing state
• Replays the revoked task later

• TReM revocation latency is 22ms
• TReM + Elastic

• Ensure the SLA for 8% more user-facing tasks compared to Priority
• Limits the lost work due to revocations to 2,1% on average

37

Thank you

Manos Pavlidakis
manospavl@ics.forth.gr

Questions?

SLA violations

19TReM: A Task Revocation Mechanism for GPUs HPCC 2020

W1: 50% user-facing – 50% batch W2: 80% user-facing – 20% batch

≈ 0,8%
≈ 0.4%

