
Transparent spatial sharing of multiple and
heterogeneous accelerators

Manos Pavlidakis
Computer Science Department, University of Crete, Greece

Advisor: Professor Angelos Bilas

PhD defense

Single accelerator resources increase

2Manos Pavlidakis – PhD defense

• Every 2 years:
• SMs: 1.9x, Memory capacity: 1.7x
• Performance fp32: 1.6x, Clock speed: 1.2x, and Performance int8: 3x *

•

0

0.4

0.8

1.2

1.6

2

0

50

100

150

200

250

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

G
H

z

N
um

\G
B

s\
TF

LO
PS

SMs Memory size (GB) Performance fp32 (TFLOPS) Clock speed (GHz)

* UC Berkeley RISElab, AI and Memory Wall

• Only 20% of jobs use > 50% SMs of a single GPU

• Only 4% of jobs use > 50% memory bw utilization

• Only 15% of jobs use > 50% of the available memory size

Today applications fail to utilize a single large accelerator [1,2,3]

[1] NSDI’22, MLaaS in the Wild: Workload Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters, Alibaba Production Cluster
[2] HPCA’ 22, AI-Enabling Workloads on Large-Scale GPU-Accelerated System: Characterization, Opportunities, and Implications, MIT Supercloud
[3] Arxiv’17, Workload Analysis of BLUE WATERS, NCSA Petascale-level supercomputer

3Manos Pavlidakis – PhD defense

Average SM and Memory utilization of various jobs using a single GPU [2]

https://www.ncsa.illinois.edu/research/project-highlights/blue-waters/

1. Lack of resource adaptation to dynamic application load

• Elastic sharing: one app uses a varying number of accelerators

at runtime

2. Lack of efficient and safe accelerator multi-tenancy

• Spatial sharing: Multiple apps/tenants run on one accelerator in

parallel

Sources of accelerator under-utilization

4Manos Pavlidakis – PhD Defense

running

Elastic sharing

NVIDIA GPU AMD GPU

TensorFlow

Server

idle

1. Lack of resource adaptation to dynamic application load

• Elastic sharing: one app uses a varying number of accelerators

at runtime

2. Lack of efficient and safe accelerator multi-tenancy

• Spatial sharing: Multiple apps/tenants run on one accelerator in

parallel

Sources of accelerator under-utilization

5Manos Pavlidakis – PhD Defense

Elastic sharing

TensorFlow

running

Load increases

NVIDIA GPU AMD GPU

Server

1. Lack of resource adaptation to dynamic application load

• Elastic sharing: one app uses a varying number of accelerators

at runtime

2. Lack of efficient and safe accelerator multi-tenancy

• Spatial sharing: Multiple apps/tenants run on one accelerator in

parallel

Sources of accelerator under-utilization

6Manos Pavlidakis – PhD Defense

Elastic sharing

TensorFlow

running

Load increases

NVIDIA GPU AMD GPU

Server

Spatial sharing

GPU

TensorFlow PyTorch

Multiple apps use one accelerator

running

Server

• Apps once at their launch time select statically accelerator type, number, and set
• Existing programming models (PMs) can not perform dynamic decisions
• Accelerator-specific PMs: A CUDA app can choose NVIDIA GPU1 and GPU3
• Unified PMs: A SYCL app can choose NVIDIA GPU1 and Intel FPGA2
• Unified PMs only hide the accelerator type different from accelerator-specific

• Static decisions lead to accelerator under-utilization
• Apps have variable resource demands during execution [4,5]  e.g. Num. of accelerators
• Existing solution: Over-provisioning to avoid performance degradation but leads to idleness

 Elastic sharing using a common runtime process between apps and accelerators

Lack of adaptation to dynamic application load

7Manos Pavlidakis – PhD Defense

[4] SoCC’19, DCUDA: Dynamic GPU Scheduling with Live Migration Support
[5] SoCC’22, MISO: exploiting multi-instance GPU capability on multi-tenant GPU clusters

1. NVIDIA GPUs support by default time-sharing
• Only one app uses the GPU at any given time

Lack of accelerator sharing

8Manos Pavlidakis – PhD Defense

Time sharing

NVIDIA GPU

CUDA app1 CUDA app2

running waiting

app1 CUDA context

kernels app1

SMs

data app1
Memory

data app2

1. NVIDIA GPUs support by default time-sharing
• Only one app uses the GPU at any given time  idleness

Lack of accelerator sharing

9Manos Pavlidakis – PhD Defense

Time sharing

NVIDIA GPU

CUDA app1 CUDA app2

running waiting

app1 CUDA context

kernels app1

SMs

data app1
Memory

idle SMs

data app2

1. NVIDIA GPUs support by default time-sharing
• Only one app uses the GPU at any given time idleness

2. Software spatial sharing such as NVIDIA MPS
• Applications run concurrently in a GPU
• Requires a single GPU context

Lack of accelerator sharing

10Manos Pavlidakis – PhD Defense

NVIDIA GPU

CUDA app1 CUDA app2

running running

shared runtime process

process CUDA context

kernel app1 kernel app2

SMs

data app1 data app2
Memory

Software spatial sharing

1. NVIDIA GPUs support by default time-sharing
• Only one app uses the GPU at any given time idleness

2. Software spatial sharing such as NVIDIA MPS
• Applications run concurrently in a GPU
• Requires a single GPU context  No protection

Lack of accelerator sharing

11Manos Pavlidakis – PhD Defense

NVIDIA GPU

CUDA app1 CUDA app2

running running

shared runtime process

process CUDA context

kernel app1 kernel app2

SMs

data app1 data app2

illegal

Memory

Software spatial sharing

1. NVIDIA GPUs support by default time-sharing
• Only one app uses the GPU at any given time idleness

2. Software spatial sharing such as NVIDIA MPS
• Applications run concurrently in a GPU
• Requires a single GPU context  No protection

3. Hardware spatial sharing such as NVIDIA MIG
• Partitions the GPU statically to independent partitions (GPUs)
• Changing the partition scheme requires GPU reset

 Safe software spatial sharing using kernel binary code
instrumentation

Lack of accelerator sharing

12Manos Pavlidakis – PhD Defense

GPU1

CUDA app1 CUDA app2

running running

app1
context

kernel app1 kernel app2

SMs

data app1 data app2
Memory

app2
context

Hardware spatial sharing

GPU2

Thesis statement

13Manos Pavlidakis – PhD defense

Provide transparent and efficient sharing of heterogeneous

accelerators for real-world applications in a server

Multiple accelerators  Elastic sharing

Single accelerator  Spatial sharing

Thesis contributions

• Specific contributions
 Per task dynamic accelerator assignment at runtime

 elastic and spatial sharing
• A shared process managing apps and accelerators

 Protect memory and control flow instructions
 protected spatial sharing
• Code instrumentation at the GPU kernel binary code

14Manos Pavlidakis – PhD defense

...

NVIDIA GPU Intel FPGA AMD GPU

Shared runtime (Server)

Client 1

TensorFlow

Client 2

PyTorch

Client N

Caffe

…

A runtime for transparent, elastic, and spatial sharing of multiple accelerators

guardian

• Introduction

• Thesis statement and contributions

 Elastic application to accelerator assignment (Arax)

• Protected accelerator spatial sharing (Guardian)

• Conclusions

Outline

15Manos Pavlidakis – PhD defense

Arax: A Runtime Framework for Decoupling Applications from Heterogeneous Accelerators, SoCC’22
Guardian: Data Isolation for Multi-Tenant GPU Sharing, Under submission

Abstract accelerator(s)
 Goal: Abstracting accelerator type, number, and set from apps

• Arax uses three main primitivesArax Application

16Manos Pavlidakis – PhD defense

Abstract accelerator(s)
 Goal: Abstracting accelerator type, number, and set from apps

• Arax uses three main primitives

1. Tasks (): hide accelerator-specific information
• Represent individual kernels and data transfers

Arax Application

TT

T

17Manos Pavlidakis – PhD defense

Abstract accelerator(s)
 Goal: Abstracting accelerator type, number, and set from apps

• Arax uses three main primitives

1. Tasks (): hide accelerator-specific information
• Represent individual kernels and data transfers

2. Buffers (): hide accelerator memory
• Opaque identifiers that represent task input/output data
• Used to keep track of data dependencies in Arax

Arax Application

T

T

T

B B

B B

B

18Manos Pavlidakis – PhD defense

Abstract accelerator(s)
 Goal: Abstracting accelerator type, number, and set from apps

• Arax uses three main primitives

1. Tasks (): hide accelerator-specific information
• Represent individual kernels and data transfers

2. Buffers (): hide accelerator memory
• Opaque identifiers that represent task input/output data
• Used to keep track of data dependencies in Arax

3. Task Queues (): express task order
• Arax ensures in-order execution in each queue
• Applications can allocate several queues for concurrency

Arax Application

T

T B B

B B T

T

T

T

T

B

19Manos Pavlidakis – PhD defense

Global resource management across applications
 Goal: Optimize accelerator use across applications

• Arax uses a shared runtime process for all apps
• Each application runs in a separate address space
• The runtime (server) has a global view of apps & accelerators

NVIDIA GPU Intel FPGA AMD GPU

Shared runtime (Server)

Client 1

Arax App

Client 2

Arax App

Client N

Arax App

...

20Manos Pavlidakis – PhD defense

Global resource management across applications
 Goal: Optimize accelerator use across applications

• Arax uses a shared runtime process for all apps
• Each application runs in a separate address space
• The runtime (server) has a global view of apps & accelerators

• Arax uses shared memory for communication
• Task and buffer synchronization
• Allocation of in-transit buffers
• Tracking of data location

NVIDIA GPU Intel FPGA AMD GPU

Shared runtime (Server)

Client 1

Arax App

T
T

T
T

Client 2

Arax App

T
T

T
T

Client N

Arax App

T
T

...

C
om

m
. Layer

21Manos Pavlidakis – PhD defense

Dynamic task assignment at runtime
 Goal: Adaptation to application load change

• Arax has a completely different execution model
• Existing runtimes: Assignment Issue
• Arax runtime: Issue  Assignment

22Manos Pavlidakis – PhD defense

NVIDIA GPU Intel FPGA AMD GPU

Client 1

Arax App

T

T

T

T

Client 2

Arax App

T

T

T

T

Client N

Arax App

T

T

...

Server

Accelerator Selector

C
om

m
. Layer

Dynamic task assignment at runtime
 Goal: Adaptation to application load change

• Arax has a completely different execution model
• Existing runtimes: Assignment Issue
• Arax runtime: Issue  Assignment

• Arax moves all task management to the server
• Select accelerator, transfer data, issue kernel, manage memory
• Applications only issue tasks

23Manos Pavlidakis – PhD defense

NVIDIA GPU Intel FPGA AMD GPU

Client 1

Arax App

T

T

T

T

Client 2

Arax App

T

T

T

T

Client N

Arax App

T

T

...

Server

Accelerator Selector

C
om

m
. Layer

Dynamic task assignment at runtime
 Goal: Adaptation to application load change

• Arax has a completely different execution model
• Existing runtimes: Assignment Issue
• Arax runtime: Issue  Assignment

• Arax moves all task management to the server
• Select accelerator, transfer data, issue kernel, manage memory
• Applications only issue tasks

• To perform the task management, the Arax server:
• Holds all the kernels supported per accelerator  registry
• Identifies the appropriate accelerator  accelerator selector
• Handles thousands of tasks and queues multi-threaded
• Maintains task order  accelerator streams

24Manos Pavlidakis – PhD defense

NVIDIA GPU Intel FPGA AMD GPU

Client 1

Arax App

T

T

T

T

Client 2

Arax App

T

T

T

T

Client N

Arax App

T

T

...

Server

Accelerator Selector

C
om

m
. Layer

Keep track of task data

Client

Arax Application

C
om

m
. Layer

Shared runtime
(Server)

GPU FPGA

T

T

TTT

T

 Goal: Flexibility in task placement

• Keep track of task data

• Prepare data for task execution lazily

1. Same acceleratorNo transferT

1. No transfer

D

25Manos Pavlidakis – PhD defense

Keep metadata per task

Client

Arax Application

C
om

m
. Layer

Shared
runtime
(Server)

GPU FPGA

T

T

3. Data transfer

TTT

T D

 Goal: Flexibility in task placement

• Keep track of task data

• Prepare data for task execution lazily

1. Same accelerator No transfer

2. Staging area  Data copy (HostToDevice)

3. Other accelerator  Data transfer (DeviceToDevice)

T
D

2. Data copy

26Manos Pavlidakis – PhD defense

Transparent spatial sharing
 Goal: Collocate tasks from different apps on the same accelerator

• Each accelerator has a mechanism for spatial sharing
• GPUs  streams
• FPGAs multi-kernel bitstreams and command queues

• Arax unifies and hides these mechanisms
• Reconfigures FPGAs depending on concurrently executing kernels
• Uses a single CUDA context for all streams in each NVIDIA GPU

• Arax apps share transparently different accelerator types
• Without knowing that they share an accelerator with other apps

27Manos Pavlidakis – PhD defense

Support real-world applications
 Goal: Minimize the porting effort

• Arax provides tools to
• Adjust CUDA apps to Arax API  client stub
• Add a new accelerator and its kernels under Arax  server stub

• For the client stub
• We intercept more than 2000 distinct CUDA calls
• 183 runtime + 249 driver + 1600 high-level lib calls (e.g., cuBLAS, cuDNN)

• For the server stub
• We extract and load app kernels to the Arax server

• We perform this process once for CUDA 10.2
• We can run Rodinia, Caffe, and TensorFlow with zero effort

NVIDIA GPU Intel FPGA

Server

T
T Comm.

Layer

Client

Client stub

CaffeTensorFlow

Server
stub

CUDA call

Arax call

28Manos Pavlidakis – PhD defense

Testbed
• Two server configurations with different accelerator types

1. NVIDIA GPU, AMD GPU, and Intel FPGA
2. Two RTX 2080 NVIDIA GPUs

• Microbenchmarks and real-world applications
• Rodinia heterogenous benchmarks suite
• Caffe deep learning framework
• TensorFlow+Keras machine learning framework

• We port applications to Arax once
• Arax transparently manages accelerators in each configuration
• Applications execute unmodified with different resources

29Manos Pavlidakis – PhD defense

• One app uses multiple accelerators of the same and different types  Elastic sharing

• We port CUDA Rodinia to Arax API once!
• Then they run transparently to multiple and heterogeneous accelerators

0

1

2

3

4

1xnvidia 1xnvidia-2str 1xaltera 2xnvidia altera+nvidia altera+nvidia+amd

Ex
ec

u
ti

o
n

 t
im

e
(s

) LavaMD Gaussian Particle

Transparent use of multiple and heterogeneous accelerators

1xaccelerator 2xaccelerators 3xaccelerators

30Manos Pavlidakis – PhD defense

Spatial sharing for heterogenous accelerators

0

300

600

900

1200

1500

1800

Ex
ec

u
ti

o
n

 t
im

e
(s

)

CUDA(MPS) Arax

0

10000

20000

30000

40000

50000

60000

Ex
ec

u
ti

o
n

 t
im

e
(s

) OpenCL Arax

0
1000

2000

3000
4000

5000

6000

Ex
ec

u
ti

o
n

 t
im

e
(s

)

ROCm Arax

• Collocate multiple apps to the same accelerator regardless of their type
• Several mixes of Rodinia and Caffe that share a single accelerator (NVIDIA-AMD GPU, Intel FPGA)
• Comparable performance to native spatial sharing mechanisms

31Manos Pavlidakis – PhD defense

Overhead of Arax compared to native execution
• Arax overhead is mainly due to kernel computation-to-communication (c2c) ratio

• High c2c: up to 5% (BFS, Gaussian, Hotspot, LavaMD, etc.)  common case
• Low c2c: up to 70% (NW, pathfinder)  rare case

0

4000

8000

12000

BFS Gaussian Hotspot

Ex
ec

u
ti

o
n

 t
im

e
(s

)

Rodinia

Arax OpenCL

32Manos Pavlidakis – PhD defense

Overhead of Arax compared to native execution

0

2

4

6

Googlenet Alexnet Caffenet

Ex
ec

u
ti

o
n

 t
im

e
(h

o
u

rs
)

Caffe

CUDA Arax

0

100

200

300

CV GNN RS

Ex
ec

u
ti

o
n

 t
im

e
(s

)

TensorFlow+Keras

CUDA Arax

• Arax overhead is mainly due to kernel computation-to-communication (c2c) ratio
• High c2c: up to 5% (BFS, Gaussian, Hotspot, LavaMD, etc.)  common case
• Low c2c: up to 70% (NW, pathfinder)  rare case

• For real-world apps (Caffe, TensorFlow) the overhead is 5-28%

0

4000

8000

12000

BFS Gaussian Hotspot

Ex
ec

u
ti

o
n

 t
im

e
(s

)

Rodinia

Arax OpenCL

33Manos Pavlidakis – PhD defense

Summary
• Existing approaches assign statically apps to accelerators under-utilization

 Arax is a runtime that enables elastic and spatial sharing of accelerators by

• Hiding the accelerator type, number, and set from applications

• Assigning tasks to accelerators dynamically at runtime

• Transferring data just before task execution

• Offering transparent heterogeneous accelerator spatial sharing

• Supporting real-world applications using an auto-porting tool

34Manos Pavlidakis – PhD defense

Outline

35Manos Pavlidakis – PhD defense

• Introduction

• Thesis statement and contributions

• Elastic application to accelerator assignment (Arax)

 Protected accelerator spatial sharing (Guardian)

• Conclusions

Arax: A Runtime Framework for Decoupling Applications from Heterogeneous Accelerators, SoCC’22
Guardian: Data Isolation for Multi-Tenant GPU Sharing, Under submission

Software spatial sharing has memory safety issues

• GPU spatial sharing requires a single GPU context

• Common GPU address space

36Manos Pavlidakis – PhD defense

[6] NSDI ‘18, G-Net: Effective GPU Sharing in NFV Systems
[7] NVIDIA Multi-Process Service (MPS)

NVIDIA GPU

CUDA app1 CUDA app2

running running

Shared runtime (Server)

Server’s CUDA context

kernel app1 kernel app2

SMs

data app1 data app2
Memory

Software spatial sharing

Software spatial sharing has memory safety issues

• GPU spatial sharing requires a single GPU context

• Common GPU address space

• An application can read or modify the data of another app

• Arax and other approaches [6,7] do not provide protection

 Protect memory and control flow instructions of kernels

that share a GPU spatially

37Manos Pavlidakis – PhD defense

[6] NSDI ‘18, G-Net: Effective GPU Sharing in NFV Systems
[7] NVIDIA Multi-Process Service (MPS)

NVIDIA GPU

CUDA app1 CUDA app2

running running

Shared runtime (Server)

Server’s CUDA context

kernel app1 kernel app2

SMs

data app1 data app2

illegal

Memory

Software spatial sharing

Guardian
• A GPU protection approach

• Makes Arax sharing safe and deployable

 Divides the GPU memory into partitions

• Each partition is assigned to only one application

 Protects memory and control flow instruction of kernels

• Add bound checking instructions before loads-stores and branches

 Prohibits apps from directly accessing the GPU

• Using the Arax client-server model

• Making Arax server a trusted process with exclusive GPU access

38Manos Pavlidakis – PhD defense

NVIDIA GPU

CUDA app1 CUDA app2

running running

Shared runtime (Server)

Server’s CUDA context

kernel app1 kernel app2

SMs

data app1 data app2

illegal

Memory

Software spatial sharing

guardian

 Goal: Isolate the common GPU address space

• Guardian uses a custom allocator

• Implemented in the Arax server

• The Guardian allocator

• Reserves all the GPU memory

• Splits memory into partitions

• Assigns a partition exclusively to an application

• A partition is a contiguous memory block

• To reduce the overhead + metadata

GPU memory partitioning

Server’s CUDA context GPU

Memory

partition A1 partition AN
data AN

39Manos Pavlidakis – PhD defense

data A1

…CUDA app A1 CUDA app AN

…
Arax

Server
CUDA streams

guardian

 Goal: Lightweight checks for memory access

• Guardian once during an offline phase

1. Extracts kernel PTX available even in closed-source libs

2. Adds bounds checking instructions before ld and st

3. Compiles the sandboxed PTX

• We examine three bound checking approaches

• Address checking (If-checks)

• Address fencing bitwise AND-OR

• Address fencing modulo

Protect GPU kernels

40Manos Pavlidakis – PhD defense

…CUDA app A1 CUDA app AN

Arax
Server

CUDA streams

sandboxed
PTX

extract & patch

Protected Server’s CUDA context
sandboxed krnl A1 GPU

Memory

partition A1
data A1

partition AN
data AN

Bound checking guardian

• Check each address against partition bounds

+ Offers illegal access detection

- High overhead  80 cycles

Address checking (if checks)

41Manos Pavlidakis – PhD defense

…CUDA app A1 CUDA app AN

Arax
Server

Protected Server’s CUDA context

sandboxed kernel A1

GPU

Memory

partition A1

data A1

partition AN

data AN

0x7fa 2d0 fff fff

address checking

0x7fa 2d1 fff fff

0x7fa 2d0 000 000

If (0x7fa2d1 ffffff < 0x7fa2d0 000000) | |
(0x7fa2d1 ffffff > 0x7fa2d0 ffffff)

{ return 0; }

sandboxed
PTX

extract & patch

CUDA streams

guardian

• An illegal address will wrap around

+ Low overhead  8 cycles

- No illegal address detection

- Power-of-two partition size

Address fencing with bitwise AND-OR

42Manos Pavlidakis – PhD defense

address fencing

0x7fa 2d1 fff fff
(0x7fa2d1 ffffff &

0x000000 ffffff) |
0x7fa2d0 000000

0x7fa 2d0 xxx xxx

…CUDA app A1 CUDA app AN

Arax
Server

sandboxed
PTX

extract & patch

CUDA streams

Protected Server’s CUDA context

sandboxed kernel A1

GPU

Memory

partition A1

data A1

partition AN

data AN

0x7fa 2d0 fff ffff0x7fa 2d0 000 000 guardian

• An illegal address will wrap around

• fenced_addr = part_base + ((illegal_addr - part_base) % part_size)

+ No power-of-two partition size

- No illegal address detection

• Medium overhead  28 cycles

• Using our inline modulo implementation (3x instructions)

• No modulo 64bit in CUDA ISA

Address fencing with modulo

43Manos Pavlidakis – PhD defense

Approach Overhead Illegal access
detection

Power-of-two
partition size

If-checks High Yes No

Bitwise Low No Yes

Modulo Medium No Yes

• Lenet sandboxed kernels overhead is on average 3.2% compared to native

0
2
4
6
8

10
12

sg
em

m
_1

sg
em

m
_2

im
2

co
l

co
l2

im

ge
m

v2
T

ge
m

m
k1

sc
al

sg
em

m
_3

sc
al

_
2

m
ax

p
o

o
lb

w
_1

ax
p

y

O
ve

rh
ea

d
 (

%
)

Overhead of bit-masking (AND-OR) per kernel

44Manos Pavlidakis – PhD defense

store global

load globalL1 L2

~285 cycles [8,9]

~285 cycles100 cycles [8,9]28 cycles [8,9]

Bit-masking
(8cycles)

• Bit-masking overhead depends on
• The latency of loads and stores

• Cache hit ratio
• Caffe and PyTorch: L1 hit ratio  37% and L2  72%

[8] Is Data Placement Optimization Still Relevant On Newer GPUs?, OSTI’18
[9] Dissecting the NVIDIA volta GPU architecture via microbenchmarking, Arxiv

 Goal: Prevent jumping over bound checks

• Direct branches are safe

• Jump to labels defined in a PTX

• Wrong labels lead to compilation errors

• Indirect branches are unsafe

• Use a register to index an array of labels

• This register can not be validated at compile time

• Guardian applies a mask to the index relative to the array size

Protect control flow instructions

45Manos Pavlidakis – PhD defense

High-level libraries perform “implicit” CUDA RT/DR calls
 Goal: Protect high-level calls of closed-source

accelerated libs (e.g., cuBLAS, cuDNN, cuFFT)

• Real-world apps use heavily accelerated libraries

• Accelerated libs contain high-level function calls
that perform implicit CUDA RT and DR calls
• cublasIsamax: cudaMalloc, cudaMemcpy, cudaLaunch

• Previous works treated these calls as black-box

 No protection

application

framework (PyTorch, Caffe)

CUDA closed src libs (cuBLAS, cuDNN)

CUDA runtime library (RT)

CUDA driver library (DR)

GPU

46Manos Pavlidakis – PhD defense

previous works

CPU

High-level libraries perform “implicit” CUDA RT/DR calls
 Goal: Protect high-level calls of closed-source

accelerated libs (e.g., cuBLAS, cuDNN, cuFFT)

• Real-world apps use heavily accelerated libraries

• Accelerated libs contain high-level function calls
that perform implicit CUDA RT and DR calls
• cublasIsamax: cudaMalloc, cudaMemcpy, cudaLaunch

• Previous works treated these calls as black-box

 No protection

• Guardian intercepts low-level RT and DR libs
• Using glib: a dynamically loaded library

• Guardian apps need to link with the static version
of CUDA accelerated libs

CPU

application

framework (PyTorch, Caffe)

CUDA closed src libs (cuBLAS, cuDNN)

CUDA runtime library (RT)

CUDA driver library (DR)

GPU

glib

47Manos Pavlidakis – PhD defense

Prevent bypassing Guardian checks
 Goal: Disallow direct GPU access from applications

• Guardian inherits Arax’s client-server architecture
• Applications or clients run in a different address space than the server

• CUDA calls are intercepted at the client side and forwarded to the server

• The server is the only entity with access to GPUs
• Receives, checks, and executes all GPU calls on behalf of applications

48Manos Pavlidakis – PhD defense

Prevent bypassing Guardian checks
 Goal: Disallow direct GPU access from applications

• Guardian inherits Arax’s client-server architecture
• Applications or clients run in a different address space than the server

• CUDA calls are intercepted at the client side and forwarded to the server

• The server is the only entity with access to GPUs
• Receives, checks, and executes all GPU calls on behalf of applications

• Guardian’s interception approach is more robust than previous works [10,11, 12]

• Guardian intercepts only CUDA runtime and driver library: ~430 CUDA calls
• Previous works intercept and high-level calls of CUDA accelerated libs > 1600 calls
• Previous works maintain more calls and high-level calls are complex and change rapid

49Manos Pavlidakis – PhD defense

[10] Europar’20, Cricket: A virtualization layer for distributed execution of CUDA applications with checkpoint/restart support
[11] IPDPS’22, DSGF: Disaggregated GPUs for Serverless functions
[12] SoCC’22, Arax: A Runtime Framework for Decoupling Applications from Heterogeneous Accelerators

• Malloc returns ptrs inside each app’s partition

• A copy succeeds if:
• Src and dst pointers are inside the partition

• For each kernel launch
• Call the sandboxed version of the kernel
• Pass extra parameters: mask + base address

Guardian CUDA call invocation
…CUDA application A1

glib

malloc launch

allocate in
partition

find/call
kernel

CUDA runtime library

CUDA application AN

glib

launch malloc

…

sandboxed
PTX

find/call
kernel

allocate in
partition

CUDA driver library

sandboxed kernels A1 sandboxed kernels AN

GPU

Memory

partition A1
data A1

partition AN
data AN

50Manos Pavlidakis – PhD defense

check
bounds

check
bounds

copy copy
extract
& patch

Safe Arax
Server

CUDA streams

Protected Server’s CUDA context

Testbed
• Two server configurations with different GPUs

• NVIDIA RTX A4000 and NVIDIA GeForce RTX 3080 Ti

• Microbenchmarks and real-world applications

• Rodinia benchmarks suite (issuing hundreds of kernels)

• Caffe deep learning framework (issuing billions of kernels)

• PyTorch machine learning framework (issuing billions of kernels)

• We evaluate Guardian using two deployments

• Spatial sharing

• Standalone applications

51Manos Pavlidakis – PhD defense

Lib/Framework #kernels #loads #stores

cuBLAS 4115 341249 106399

cuFFT 5173 175256 371932

cuRAND 204 4949 3610

Rodinia 23 544 285

Caffe 1294 87267 32946

PyTorch 27987 2083978 857987

GPU sharing

0
1000
2000
3000
4000
5000
6000

Ex
ec

u
ti

o
n

 t
im

e
(s

)

Native MPS Guardian address fencing (bitwise AND-OR)

• Compare Guardian with
• MPS: No protection nor multi-tenancy (only applications from the same user co-execute)

• Native CUDA runtime: Time-sharing used from previous works [12,13]

• Comparable performance to MPS and up to 2x better to Native CUDA runtime

52Manos Pavlidakis – PhD defense

[12] ASPLOS’20, AvA: Accelerated Virtualization of Accelerators
[13] EuroSys’20, AlloX: Compute Allocation in Hybrid Clusters

Overhead of Guardian without sharing

0
10000
20000
30000
40000
50000
60000
70000
80000

Googlenet Alexnet Caffenet

Ex
ec

u
ti

o
n

 t
im

e
(s

)

 Includes call interception and checking overheads

• Address fencing overhead is from 4.5% - 12% compared to native CUDA

• Address checking has 1.7x worst execution time compared to native CUDA

0
10000
20000
30000
40000
50000
60000
70000
80000

VGG11 MobileNet ResNet50
Ex

ec
u

ti
o

n
 t

im
e

(s
)

53Manos Pavlidakis – PhD defense

Summary

• Guardian is a GPU protection approach that enables safe spatial sharing

• It is easily deployable: No extra HW or application/kernel source code

• It supports closed-source libs: RT/DR interception + PTX instrumentation

• It incurs low overhead: Address-fencing (bitwise AND-OR)

54Manos Pavlidakis – PhD defense

• Introduction

• Thesis statement and contributions

• Elastic application to accelerator assignment (Arax)

• Protected accelerator spatial sharing (Guardian)

 Conclusions

Outline

55Manos Pavlidakis – PhD defense

Arax: A Runtime Framework for Decoupling Applications from Heterogeneous Accelerators, SoCC’22
Guardian: Data Isolation for Multi-Tenant GPU Sharing, Under submission

Conclusions

• Our approach has the following features

 Enables per-task dynamic accelerator assignment elastic sharing

 Protects memory and control flow instructions  spatial sharing

56Manos Pavlidakis – PhD defense

We design and implement a runtime that enables elastic and spatial
accelerator sharing for real-world applications

Future work
• Use zero-copy techniques to minimize the extra copy overhead

• Compile PTX to LLVM-IR to support Intel and AMD GPUs

• To run complex frameworks to heterogeneous accelerators

• Integrate Arax to a resource manager to support distributed environments

• Implement a more efficient GPU allocator to reduce wasted space

57Manos Pavlidakis – PhD defense

Acknowledgements

• FORTH-ICS Graduate Scholarships  September 2017 – now

• Vineyard (GA 687628)

• EVOLVE (GA 825061)

• EUPILOT (GA 101034126)

• DEEP-SEA (GA 955606)

• HiPEAC (GA 871174)

58Manos Pavlidakis – PhD defense

Publications
1. Stelios Mavridis, Manos Pavlidakis, Ioannis Stamoulias, Christos Kozanitis, Nikos Chrysos,

Christoforos Kachris, Dimitrios Soudris, and Angelos Bilas. 2017. VineTalk: Simplifying software
access and sharing of FPGAs in datacenters. In Proceedings of the 27th International Conference
on Field Programmable Logic and Applications (FPL ’17).

2. Manos Pavlidakis, SteliosMavridis, Nikos Chrysos, and Angelos Bilas. 2020. TReM: A Task
Revocation Mechanism for GPUs. In Proceedings of the 22th IEEE International Conference on
High Performance Computing and Communications (HPCC ’20).

3. Manos Pavlidakis, Stelios Mavridis, Antony Chazapis, Giorgos Vasiliadis, and Angelos Bilas. Arax: A
Runtime Framework for Decoupling Applications from Heterogeneous Accelerators. In
Proceedings of the 13th ACM Symposium on Cloud Computing (SoCC ’22).

4. Manos Pavlidakis, Giorgos Vasiliadis, SteliosMavridis, Anargiros Argiros, Antony Chazapis, and
Angelos Bilas. Guardian: Data Isolation for Multi-Tenant GPU Sharing. (Under submission).

59Manos Pavlidakis – PhD defense

60

: A runtime for decoupling apps from accelerators

Manos Pavlidakis
manospavl@ics.forth.gr

Questions?

Transparent spatial sharing of multiple and
heterogeneous accelerators

PhD defense

