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Single accelerator resources increase
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• Every 2 years: 
• SMs: 1.9x, Memory capacity: 1.7x
• Performance fp32: 1.6x, Clock speed: 1.2x, and Performance int8: 3x *
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• Only 20% of jobs use > 50% SMs of a single GPU

• Only 4% of jobs use > 50% memory bw utilization

• Only 15% of jobs use > 50% of the available memory size

Today applications fail to utilize a single large accelerator [1,2,3]

[1]  NSDI’22, MLaaS in the Wild: Workload Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters, Alibaba Production Cluster
[2] HPCA’ 22, AI-Enabling Workloads on Large-Scale GPU-Accelerated System: Characterization, Opportunities, and Implications, MIT Supercloud
[3] Arxiv’17, Workload Analysis of BLUE WATERS, NCSA Petascale-level supercomputer
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Average SM and Memory utilization of various jobs using a single GPU [2]

https://www.ncsa.illinois.edu/research/project-highlights/blue-waters/


1.  Lack of resource adaptation to dynamic application load

• Elastic sharing: one app uses a varying number of accelerators 

at runtime

2. Lack of efficient and safe accelerator multi-tenancy

• Spatial sharing: Multiple apps/tenants run on one accelerator in 

parallel

Sources of accelerator under-utilization
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1.  Lack of resource adaptation to dynamic application load

• Elastic sharing: one app uses a varying number of accelerators 

at runtime

2. Lack of efficient and safe accelerator multi-tenancy

• Spatial sharing: Multiple apps/tenants run on one accelerator in 

parallel

Sources of accelerator under-utilization
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• Apps once at their launch time select statically accelerator type, number, and set
• Existing programming models (PMs) can not perform dynamic decisions
• Accelerator-specific PMs: A CUDA app can choose NVIDIA GPU1 and GPU3
• Unified PMs: A SYCL app can choose NVIDIA GPU1 and Intel FPGA2
• Unified PMs only hide the accelerator type different from accelerator-specific

• Static decisions lead to accelerator under-utilization
• Apps have variable resource demands during execution [4,5]  e.g. Num. of accelerators
• Existing solution: Over-provisioning to avoid performance degradation but leads to idleness 

 Elastic sharing using a common runtime process between apps and accelerators

Lack of adaptation to dynamic application load
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[4]  SoCC’19, DCUDA: Dynamic GPU Scheduling with Live Migration Support
[5]  SoCC’22, MISO: exploiting multi-instance GPU capability on multi-tenant GPU clusters



1. NVIDIA GPUs support by default time-sharing
• Only one app uses the GPU at any given time

Lack of accelerator sharing
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1. NVIDIA GPUs support by default time-sharing
• Only one app uses the GPU at any given time  idleness

Lack of accelerator sharing
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1. NVIDIA GPUs support by default time-sharing
• Only one app uses the GPU at any given time idleness

2.    Software spatial sharing such as NVIDIA MPS
• Applications run concurrently in a GPU
• Requires a single GPU context

Lack of accelerator sharing
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1. NVIDIA GPUs support by default time-sharing
• Only one app uses the GPU at any given time idleness

2.    Software spatial sharing such as NVIDIA MPS
• Applications run concurrently in a GPU
• Requires a single GPU context  No protection

Lack of accelerator sharing
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1. NVIDIA GPUs support by default time-sharing
• Only one app uses the GPU at any given time idleness

2.    Software spatial sharing such as NVIDIA MPS
• Applications run concurrently in a GPU
• Requires a single GPU context  No protection

3. Hardware spatial sharing such as NVIDIA MIG
• Partitions the GPU statically to independent partitions (GPUs)
• Changing the partition scheme requires GPU reset

 Safe software spatial sharing using kernel binary code
instrumentation

Lack of accelerator sharing
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Thesis statement
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Provide transparent and efficient sharing of heterogeneous 

accelerators for real-world applications in a server

Multiple accelerators  Elastic sharing

Single accelerator  Spatial sharing



Thesis contributions

• Specific contributions
 Per task dynamic accelerator assignment at runtime

 elastic and spatial sharing
• A shared process managing apps and accelerators

 Protect memory and control flow instructions 
 protected spatial sharing
• Code instrumentation at the GPU kernel binary code
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• Introduction

• Thesis statement and contributions

 Elastic application to accelerator assignment (Arax)

• Protected accelerator spatial sharing (Guardian)

• Conclusions

Outline
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Arax: A Runtime Framework for Decoupling Applications from Heterogeneous Accelerators, SoCC’22
Guardian: Data Isolation for Multi-Tenant GPU Sharing, Under submission



Abstract accelerator(s)
 Goal: Abstracting accelerator type, number, and set from apps

• Arax uses three main primitivesArax Application
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Abstract accelerator(s)
 Goal: Abstracting accelerator type, number, and set from apps

• Arax uses three main primitives

1. Tasks (     ): hide accelerator-specific information
• Represent individual kernels and data transfers

Arax Application
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Abstract accelerator(s)
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Abstract accelerator(s)
 Goal: Abstracting accelerator type, number, and set from apps

• Arax uses three main primitives

1. Tasks (     ): hide accelerator-specific information
• Represent individual kernels and data transfers

2. Buffers (     ): hide accelerator memory
• Opaque identifiers that represent task input/output data
• Used to keep track of data dependencies in Arax

3. Task Queues (    ): express task order
• Arax ensures in-order execution in each queue
• Applications can allocate several queues for concurrency

Arax Application
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Global resource management across applications
 Goal: Optimize accelerator use across applications  

• Arax uses a shared runtime process for all apps
• Each application runs in a separate address space
• The runtime (server) has a global view of apps & accelerators

NVIDIA GPU Intel FPGA AMD GPU

Shared runtime (Server)

Client 1

Arax App

Client 2

Arax App

Client N

Arax App

...
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Global resource management across applications
 Goal: Optimize accelerator use across applications  

• Arax uses a shared runtime process for all apps
• Each application runs in a separate address space
• The runtime (server) has a global view of apps & accelerators

• Arax uses shared memory for communication
• Task and buffer synchronization
• Allocation of in-transit buffers
• Tracking of data location
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Dynamic task assignment at runtime
 Goal: Adaptation to application load change

• Arax has a completely different execution model
• Existing runtimes: Assignment Issue
• Arax runtime: Issue  Assignment
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Dynamic task assignment at runtime
 Goal: Adaptation to application load change

• Arax has a completely different execution model
• Existing runtimes: Assignment Issue
• Arax runtime: Issue  Assignment

• Arax moves all task management to the server
• Select accelerator, transfer data, issue kernel, manage memory
• Applications only issue tasks
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Dynamic task assignment at runtime
 Goal: Adaptation to application load change

• Arax has a completely different execution model
• Existing runtimes: Assignment Issue
• Arax runtime: Issue  Assignment

• Arax moves all task management to the server
• Select accelerator, transfer data, issue kernel, manage memory
• Applications only issue tasks

• To perform the task management, the Arax server:
• Holds all the kernels supported per accelerator  registry
• Identifies the appropriate accelerator  accelerator selector
• Handles thousands of tasks and queues multi-threaded
• Maintains task order  accelerator streams
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Keep track of task data
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Arax Application
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 Goal: Flexibility in task placement

• Keep track of task data

• Prepare data for task execution lazily

1. Same acceleratorNo transferT

1. No transfer

D
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Keep metadata per task 
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 Goal: Flexibility in task placement 

• Keep track of task data

• Prepare data for task execution lazily

1. Same accelerator No transfer

2. Staging area  Data copy (HostToDevice)

3. Other accelerator  Data transfer (DeviceToDevice)
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Transparent spatial sharing
 Goal: Collocate tasks from different apps on the same accelerator

• Each accelerator has a mechanism for spatial sharing
• GPUs  streams
• FPGAs multi-kernel bitstreams and command queues

• Arax unifies and hides these mechanisms
• Reconfigures FPGAs depending on concurrently executing kernels
• Uses a single CUDA context for all streams in each NVIDIA GPU

• Arax apps share transparently different accelerator types
• Without knowing that they share an accelerator with other apps
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Support real-world applications
 Goal: Minimize the porting effort

• Arax provides tools to
• Adjust CUDA apps to Arax API  client stub
• Add a new accelerator and its kernels under Arax  server stub

• For the client stub
• We intercept more than 2000 distinct CUDA calls 
• 183 runtime + 249 driver + 1600 high-level lib calls (e.g., cuBLAS, cuDNN)

• For the server stub
• We extract and load app kernels to the Arax server

• We perform this process once for CUDA 10.2
• We can run Rodinia, Caffe, and TensorFlow with zero effort

NVIDIA GPU Intel FPGA

Server

T
T Comm. 

Layer

Client

Client stub

CaffeTensorFlow

Server 
stub

CUDA call

Arax call
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Testbed
• Two server configurations with different accelerator types

1. NVIDIA GPU, AMD GPU, and Intel FPGA 
2. Two RTX 2080 NVIDIA GPUs

• Microbenchmarks and real-world applications
• Rodinia heterogenous benchmarks suite
• Caffe deep learning  framework
• TensorFlow+Keras machine learning framework

• We port applications to Arax once
• Arax transparently manages accelerators in each configuration
• Applications execute unmodified with different resources
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• One app uses multiple accelerators of the same and different types  Elastic sharing

• We port CUDA Rodinia to Arax API once!
• Then they run transparently to multiple and heterogeneous accelerators
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Spatial sharing for heterogenous accelerators 
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• Collocate multiple apps to the same accelerator regardless of their type
• Several mixes of Rodinia and Caffe that share a single accelerator (NVIDIA-AMD GPU, Intel FPGA)
• Comparable performance to native spatial sharing mechanisms
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Overhead of Arax compared to native execution
• Arax overhead is mainly due to kernel computation-to-communication (c2c) ratio

• High c2c: up to 5% (BFS, Gaussian, Hotspot, LavaMD, etc.)  common case 
• Low c2c: up to 70% (NW, pathfinder)  rare case
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Overhead of Arax compared to native execution
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• Arax overhead is mainly due to kernel computation-to-communication (c2c) ratio
• High c2c: up to 5% (BFS, Gaussian, Hotspot, LavaMD, etc.)  common case 
• Low c2c: up to 70% (NW, pathfinder)  rare case

• For real-world apps (Caffe, TensorFlow)  the overhead is 5-28%
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Summary
• Existing approaches assign statically apps to accelerators under-utilization

 Arax is a runtime that enables elastic and spatial sharing of accelerators by

• Hiding the accelerator type, number, and set from applications

• Assigning tasks to accelerators dynamically at runtime

• Transferring data just before task execution

• Offering transparent heterogeneous accelerator spatial sharing

• Supporting real-world applications using an auto-porting tool
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Outline
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• Introduction

• Thesis statement and contributions

• Elastic application to accelerator assignment (Arax)

 Protected accelerator spatial sharing (Guardian)

• Conclusions

Arax: A Runtime Framework for Decoupling Applications from Heterogeneous Accelerators, SoCC’22
Guardian: Data Isolation for Multi-Tenant GPU Sharing, Under submission



Software spatial sharing has memory safety issues  

• GPU spatial sharing requires a single GPU context

• Common GPU address space

36Manos Pavlidakis – PhD defense

[6]  NSDI ‘18, G-Net: Effective GPU Sharing in NFV Systems
[7]  NVIDIA Multi-Process Service (MPS)
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Software spatial sharing has memory safety issues  

• GPU spatial sharing requires a single GPU context

• Common GPU address space

• An application can read or modify the data of another app

• Arax and other approaches [6,7] do not provide protection

 Protect memory and control flow instructions of kernels 

that share a GPU spatially
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[6]  NSDI ‘18, G-Net: Effective GPU Sharing in NFV Systems
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Guardian
• A GPU protection approach

• Makes Arax sharing safe and deployable  

 Divides the GPU memory into partitions 

• Each partition is assigned to only one application

 Protects memory and control flow instruction of kernels

• Add bound checking instructions before loads-stores and branches

 Prohibits apps from directly accessing the GPU

• Using the Arax client-server model

• Making Arax server a trusted process with exclusive GPU access
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 Goal: Isolate the common GPU address space

• Guardian uses a custom allocator

• Implemented in the Arax server 

• The Guardian allocator

• Reserves all the GPU memory

• Splits memory into partitions 

• Assigns a partition exclusively to an application

• A partition is a contiguous memory block 

• To reduce the overhead + metadata

GPU memory partitioning

Server’s CUDA context GPU

Memory

partition A1 partition AN
data AN
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 Goal: Lightweight checks for memory access

• Guardian once during an offline phase

1. Extracts kernel PTX available even in closed-source libs

2. Adds bounds checking instructions before ld and st

3. Compiles the sandboxed PTX

• We examine three bound checking approaches

• Address checking  (If-checks)

• Address fencing bitwise AND-OR

• Address fencing modulo

Protect GPU kernels
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• Check each address against partition bounds 

+ Offers illegal access detection

- High overhead  80 cycles

Address checking (if checks)
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• An illegal address will wrap around

+ Low overhead  8 cycles

- No illegal address detection

- Power-of-two partition size

Address fencing with bitwise AND-OR
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address fencing
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• An illegal address will wrap around

• fenced_addr = part_base + ( (illegal_addr - part_base) % part_size)

+   No power-of-two partition size

- No illegal address detection 

• Medium overhead  28 cycles 

• Using our inline modulo implementation (3x instructions)

• No modulo 64bit in CUDA ISA

Address fencing with modulo
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Approach Overhead Illegal access 
detection

Power-of-two 
partition size

If-checks High Yes No

Bitwise Low No Yes

Modulo Medium No Yes



• Lenet sandboxed kernels overhead is on average 3.2% compared to native
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store global

load globalL1 L2

~285 cycles [8,9]

~285 cycles100 cycles [8,9]28 cycles [8,9]

Bit-masking
(8cycles)

• Bit-masking overhead depends on
• The latency of loads and stores

• Cache hit ratio
• Caffe and PyTorch: L1 hit ratio  37% and L2  72%

[8] Is Data Placement Optimization Still Relevant On Newer GPUs?, OSTI’18
[9] Dissecting the NVIDIA volta GPU architecture via microbenchmarking, Arxiv



 Goal: Prevent jumping over bound checks

• Direct branches are safe

• Jump to labels defined in a PTX

• Wrong labels lead to compilation errors

• Indirect branches are unsafe

• Use a register to index an array of labels

• This register can not be validated at compile time

• Guardian applies a mask to the index relative to the array size

Protect control flow instructions
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High-level libraries perform “implicit” CUDA RT/DR calls
 Goal: Protect high-level calls of closed-source

accelerated libs (e.g., cuBLAS, cuDNN, cuFFT)

• Real-world apps use heavily accelerated libraries

• Accelerated libs contain high-level function calls 
that perform implicit CUDA RT and DR calls
• cublasIsamax: cudaMalloc, cudaMemcpy, cudaLaunch

• Previous works treated these calls as black-box

 No protection

application

framework (PyTorch, Caffe)

CUDA closed src libs (cuBLAS, cuDNN)

CUDA runtime library (RT)

CUDA driver library (DR)

GPU

46Manos Pavlidakis – PhD defense

previous works 
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High-level libraries perform “implicit” CUDA RT/DR calls
 Goal: Protect high-level calls of closed-source

accelerated libs (e.g., cuBLAS, cuDNN, cuFFT)

• Real-world apps use heavily accelerated libraries

• Accelerated libs contain high-level function calls 
that perform implicit CUDA RT and DR calls
• cublasIsamax: cudaMalloc, cudaMemcpy, cudaLaunch

• Previous works treated these calls as black-box

 No protection

• Guardian intercepts low-level RT and DR libs
• Using glib: a dynamically loaded library

• Guardian apps need to link with the static version 
of  CUDA accelerated libs

CPU

application

framework (PyTorch, Caffe)

CUDA closed src libs (cuBLAS, cuDNN)

CUDA runtime library (RT)

CUDA driver library (DR)

GPU

glib
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Prevent bypassing Guardian checks
 Goal: Disallow direct GPU access from applications

• Guardian inherits Arax’s client-server architecture 
• Applications or clients run in a different address space than the server

• CUDA calls are intercepted at the client side and forwarded to the server

• The server is the only entity with access to GPUs
• Receives, checks, and executes all GPU calls on behalf of applications
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Prevent bypassing Guardian checks
 Goal: Disallow direct GPU access from applications

• Guardian inherits Arax’s client-server architecture 
• Applications or clients run in a different address space than the server

• CUDA calls are intercepted at the client side and forwarded to the server

• The server is the only entity with access to GPUs
• Receives, checks, and executes all GPU calls on behalf of applications

• Guardian’s interception approach is more robust than previous works [10,11, 12]

• Guardian intercepts only CUDA runtime and driver library: ~430 CUDA calls
• Previous works intercept and high-level calls of CUDA accelerated libs > 1600 calls
• Previous works maintain more calls and high-level calls are complex and change rapid
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[10] Europar’20, Cricket: A virtualization layer for distributed execution of CUDA applications with checkpoint/restart support
[11] IPDPS’22, DSGF: Disaggregated GPUs for Serverless functions
[12] SoCC’22, Arax: A Runtime Framework for Decoupling Applications from Heterogeneous Accelerators



• Malloc returns ptrs inside each app’s partition

• A copy succeeds if:
• Src and dst pointers are inside the partition

• For each kernel launch 
• Call the sandboxed version of the kernel
• Pass extra parameters: mask + base address

Guardian CUDA call invocation
…CUDA application A1

glib

malloc launch

allocate in 
partition

find/call 
kernel

CUDA runtime library

CUDA application AN

glib

launch malloc

…

sandboxed 
PTX

find/call 
kernel

allocate in 
partition

CUDA driver library

sandboxed kernels A1 sandboxed kernels AN

GPU

Memory

partition A1
data A1

partition AN
data AN
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Testbed
• Two server configurations with different GPUs

• NVIDIA RTX A4000 and NVIDIA GeForce RTX 3080 Ti

• Microbenchmarks and real-world applications

• Rodinia benchmarks suite (issuing hundreds of kernels)

• Caffe deep learning  framework (issuing billions of kernels)

• PyTorch machine learning framework (issuing billions of kernels)

• We evaluate Guardian using two deployments

• Spatial sharing

• Standalone applications
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Lib/Framework #kernels #loads #stores

cuBLAS 4115 341249 106399

cuFFT 5173 175256 371932

cuRAND 204 4949 3610

Rodinia 23 544 285

Caffe 1294 87267 32946

PyTorch 27987 2083978 857987



GPU sharing 
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Native MPS Guardian address fencing (bitwise AND-OR)

• Compare Guardian with  
• MPS: No protection nor multi-tenancy (only applications from the same user co-execute)

• Native CUDA runtime: Time-sharing used from previous works [12,13]

• Comparable performance to MPS and up to 2x better to Native CUDA runtime

52Manos Pavlidakis – PhD defense

[12] ASPLOS’20, AvA: Accelerated Virtualization of Accelerators
[13] EuroSys’20, AlloX: Compute Allocation in Hybrid Clusters



Overhead of Guardian without sharing
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 Includes call interception and checking overheads

• Address fencing overhead is from 4.5% - 12% compared to native CUDA

• Address checking has 1.7x worst execution time compared to native CUDA
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Summary

• Guardian is a GPU protection approach that enables safe spatial sharing 

• It is easily deployable: No extra HW or application/kernel source code

• It supports closed-source libs: RT/DR interception + PTX instrumentation

• It incurs low overhead: Address-fencing (bitwise AND-OR)

54Manos Pavlidakis – PhD defense



• Introduction

• Thesis statement and contributions

• Elastic application to accelerator assignment (Arax)

• Protected accelerator spatial sharing (Guardian)

 Conclusions

Outline
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Arax: A Runtime Framework for Decoupling Applications from Heterogeneous Accelerators, SoCC’22
Guardian: Data Isolation for Multi-Tenant GPU Sharing, Under submission



Conclusions

• Our approach has the following features

 Enables per-task dynamic accelerator assignment elastic sharing

 Protects memory and control flow instructions  spatial sharing
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We design and implement a runtime that enables elastic and spatial 
accelerator sharing for real-world applications



Future work
• Use zero-copy techniques to minimize the extra copy overhead

• Compile PTX to LLVM-IR to support Intel and AMD GPUs

• To run complex frameworks to heterogeneous accelerators

• Integrate Arax to a resource manager to support distributed environments

• Implement a more efficient GPU allocator to reduce wasted space

57Manos Pavlidakis – PhD defense



Acknowledgements

• FORTH-ICS Graduate Scholarships  September 2017 – now

• Vineyard (GA 687628)

• EVOLVE (GA 825061)

• EUPILOT (GA 101034126)

• DEEP-SEA (GA 955606)

• HiPEAC (GA 871174)

58Manos Pavlidakis – PhD defense



Publications
1. Stelios Mavridis, Manos Pavlidakis, Ioannis Stamoulias, Christos Kozanitis, Nikos Chrysos, 

Christoforos Kachris, Dimitrios Soudris, and Angelos Bilas. 2017. VineTalk: Simplifying software 
access and sharing of FPGAs in datacenters. In Proceedings of the 27th International Conference 
on Field Programmable Logic and Applications (FPL ’17). 

2. Manos Pavlidakis, SteliosMavridis, Nikos Chrysos, and Angelos Bilas. 2020. TReM: A Task 
Revocation Mechanism for GPUs. In Proceedings of the 22th IEEE International Conference on 
High Performance Computing and Communications (HPCC ’20).

3. Manos Pavlidakis, Stelios Mavridis, Antony Chazapis, Giorgos Vasiliadis, and Angelos Bilas. Arax: A 
Runtime Framework for Decoupling Applications from Heterogeneous Accelerators. In 
Proceedings of the 13th ACM Symposium on Cloud Computing (SoCC ’22).

4. Manos Pavlidakis, Giorgos Vasiliadis, SteliosMavridis, Anargiros Argiros, Antony Chazapis, and 
Angelos Bilas. Guardian: Data Isolation for Multi-Tenant GPU Sharing. (Under submission).

59Manos Pavlidakis – PhD defense



60

: A runtime for decoupling apps from accelerators

Manos Pavlidakis
manospavl@ics.forth.gr

Questions?

Transparent spatial sharing of multiple and 
heterogeneous accelerators 

PhD defense


