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• The use of accelerators increases
• Need for high performance at low energy 

consumption

• Accelerator heterogeneity increases [1, 2]
• Different applications have different needs
• Inference → CPU, ASIC
• Training → GPU, FPGA
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Use of heterogeneous accelerators increases
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[1] DOE ASCR Basic Research Needs Workshop 2018, Extreme Heterogeneity
[2] HPCA 2018, Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective
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• Unified programming models (HIP, SYCL, OpenCL)  aim for write-once code
• They allow compiling the same source code for different accelerators

• Static accelerator selection at app initialization time for the whole execution
• External schedulers are static in a similar manner 

• Static selection leads to accelerator under-utilization due to
• Reduced accelerator sharing
• Lack of adaptation during execution (elasticity)

• Dynamically selecting accelerators at runtime requires 
• Significant effort for application writing
• Global scheduling decisions across applications
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Challenge: Transparent use of multiple/heterogeneous accelerators



Arax
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• A runtime for managing multiple & heterogeneous accelerators within a server
• RPC-based approach to abstract accelerators
• Shared runtime for all applications running in a server

• Arax offers transparent mechanisms for
• Dynamic task assignment
• Lazy data placement
• Spatial accelerator sharing across applications
• Automatic stub generation



Why Arax?
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Capabilities MPS
(NVIDIA)

StarPU
(Europar’09)

Gandiva
(OSDI’18)

DCUDA
(SoCC’19)

AvA
(ASPLOS’20)

Abstract accelerators - ✓ - - ✓

Shared runtime ✓ - ✓ ✓ -

Dynamic task assignment - - ✓

(app)
✓

(app)
-

Live data migration - - ✓ ✓ -

Spatial sharing ✓ - - - -

Automated porting N.A. - N.A. N.A. ✓
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• Motivation and overview

• Design
• Abstraction primitives
• Global resource management
• Dynamic task assignment 
• Lazy data placement
• Spatial accelerator sharing
• Automatic stub generation

• Evaluation

• Conclusions

Outline
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✓ Goal: Hide accelerator types from applications

• Arax uses three main primitives

1. Tasks (     ): hide accelerator-specific information
• Represent individual kernels and data transfers
• Fine-grain in the range of milliseconds

2. Buffers (     ): hide accelerator memory
• Opaque identifiers that represent task input/output data
• Used to keep track of data dependencies in Arax

3. Task Queues (    ): express task order
• Arax ensures in-order execution in each queue
• Applications can allocate several queues for concurrency
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Global resource management across applications
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✓ Goal: Optimize accelerator use across applications  

• Arax uses a shared runtime process for all apps
• Each application runs in a separate address space
• The runtime (server) has a global view of apps & accelerators

• Arax uses shared memory for communication
• Task and buffer synchronization →Mutexes/Spin locks
• Allocation of in-transit buffers → Reference counters
• Tracking of data location →Metadata per buffer
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Dynamic task assignment at runtime
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✓ Goal: Adaptation to application load change

• Arax moves all task management to the server
• Select accelerator, transfer data, issue kernel, manage memory
• Applications only issue tasks

• Arax performs late task assignment
• Native: Assignment→ Issue→ Execution
• Arax: Issue→ Assignment→ Execution 

• Arax server 
• Hold kernels per accelerator →Kernel registry
• Identifies appropriate accelerator → Policies
• Handles thousands of tasks & queues →Multi-threaded
• Maintains task order →Mapping tasks to streams/cmd queues



Lazy data placement

9ACM Symposium on Cloud Computing 2022

Client

Arax Application

C
om

m
. Layer

Server

GPU FPGA

T

T

TTT

T

✓ Goal: Flexibility in task placement 

• Prepare data for task execution lazily
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Lazy data placement
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✓ Goal: Flexibility in task placement 

• Prepare data for task execution lazily

1. Same accelerator →No transfer

2. Staging area → Data copy (HostToDevice)

3. Other accelerator → Data transfer (DeviceToDevice)
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Spatial sharing
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✓ Goal: Collocate tasks from different apps on the same accelerator

• Each accelerator has a mechanism for spatial sharing
• GPUs → streams
• FPGAs →multi-kernel bitstreams and command queues

• Arax unifies and hides these mechanisms
• Reconfigures FPGAs depending on concurrently executing kernels
• Uses a single CUDA context for all streams in each NVIDIA GPU



Automatic stub generation 
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✓ Goal: Reduce porting effort
• To modify apps for Arax (we target CUDA)
• To add a new accelerator and its kernels under Arax

• Arax provides tools to generate client & server stubs
• Client stubs translate CUDA to Arax calls
• Server stubs are wrappers for existing accelerator kernels
• Most CUDA calls translate to a single Arax call that invokes kernels

• Reality is more complicated → fat binaries
• In CUDA, host and kernel code are included in a single binary
• Arax tools extract automatically kernels offline for loading in server

• We successfully run TensorFlow+Keras, Caffe
• With tasks executing on CPU, GPU, FPGA
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Testbed
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• Two server configurations with different accelerator types
1. NVIDIA GPU, AMD GPU, and Intel FPGA 
2. Two RTX 2080 NVIDIA GPUs

• Microbenchmarks and real-world applications
• Rodinia heterogenous benchmarks suite
• Caffe deep learning  framework
• TensorFlow+Keras machine learning framework

• We port applications to Arax once
• Arax transparently manages accelerators in each configuration
• Applications execute unmodified with different resources

13
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• Rodinia on multiple accelerators of the same and different types
• Transparently, no application modifications
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Use of multiple and heterogeneous accelerators
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Spatial sharing 
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• Rodinia and Caffe sharing a single accelerator (NVIDIA, FPGA, AMD)
• Several mixes of microbenchmarks with and without Caffe
• Comparable performance to native spatial sharing mechanisms



Elastic use of accelerators
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• Dynamically vary the number of accelerators provided to an app

• Low-priority app starts first and then the high-priority

• With elasticity all accelerators are utilized

• Small overhead to high-priority app
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Overhead of Arax compared to native execution
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• Arax overhead is mainly due to kernel computation-to-communication ratio
• High: up to 5% (BFS, Gaussian, Hotspot, LavaMD, etc.)
• Low: up to 70% (NW, pathfinder)

• For real-world apps (Caffe, TensorFlow)  the overhead is 5-28%
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Summary
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• Arax is a runtime that decouples applications from accelerators using
• Dynamic task assignment
• Lazy data placement
• Spatial sharing
• Automatic stub generation

• We demonstrate Arax capabilities using
• Real-world applications: Caffe, TensorFlow, and microbenchmarks: Rodinia
• Multiple and heterogeneous accelerators: CPUs, GPUs, FPGAs
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Arax: A runtime for decoupling apps from accelerators
Open-source: https://github.com/CARV-ICS-FORTH/arax

Manos Pavlidakis
manospavl@ics.forth.gr

Questions?

Arax: A runtime for decoupling apps 
from accelerators
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