JFORTH

INSTITUTE OF COMPUTER SCIENCE

Arax: A Runtime Framework for Decoupling

Applications from Heterogeneous Accelerators

Manos Pavlidakis'?, Stelios Mavridis!, Antony Chazapis', Giorgos Vasiliadis',
and Angelos Bilas'?

"Institute of Computer Science, Foundation for Research and Technology - Hellas, Greece
2 Computer Science Department, University of Crete, Greece

Use of heterogeneous accelerators increases

. Datacenter accelerator market size
* The use of accelerators increases

 Need for high performance at low energy 38 75billion S
consumption o
o 60
- o0 m CPU m FPGA
c
= 40 GPU ASIC
« Accelerator heterogeneity increases|[1, 2] D <4
* Different applications have different needs 20
o 10 I
Inference = CPU, ASIC O .

* Training = GPU, FPGA 2017 2019 2021 2023 2025 2027

Source: https://www.kbvresearch.com/data-center-
accelerator-market/

[1] DOE ASCR Basic Research Needs Workshop 2018, Extreme Heterogeneity
[2]HPCA 2018, Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective

ACM Symposium on Cloud Computing 2022 2

Challenge: Transparent use of multiple/heterogeneous accelerators

 Unified programming models (HIP, SYCL, OpenCL) aim for write-once code
» They allow compiling the same source code for different accelerators

« Static accelerator selection at app initialization time for the whole execution
 External schedulers are static in a similar manner

 Static selection leads to accelerator under-utilization due to
* Reduced accelerator sharing
 Lack of adaptation during execution (elasticity)

« Dynamically selecting accelerators at runtime requires
 Significant effort for application writing
* Global scheduling decisions across applications

ACM Symposium on Cloud Computing 2022

Arax

* Aruntime for managing multiple & heterogeneous accelerators within a server
« RPC-based approach to abstract accelerators
« Shared runtime for all applications running in a server

» Arax offers transparent mechanisms for
* Dynamic task assignment
* Lazy data placement
« Spatial accelerator sharing across applications
* Automatic stub generation

ACM Symposium on Cloud Computing 2022

Why Arax?

Capabilities MPS StarPU Gandiva DCUDA AVA
P (NVIDIA) (Europar09) (0SDI8) (SoCC19) (ASPLOS20)
Abstract accelerators - v - - v
Shared runtime v - v v -
Dynamic task assignment - - v v -
(app) (app)
Live data migration - - v v -
Spatial sharing v - - - -
Automated porting N.A. - N.A. N.A. v

ACM Symposium on Cloud Computing 2022

Why Arax?

MPS StarPU Gandiva DCUDA

Arax

Capabilities (NVIDIA)

Abstract accelerators - v - -

Shared runtime v - v v

: : v v

Dynamic task assignment - -

(app) (app)

Live data migration - - v v

Spatial sharing v - - -
Automated porting N.A. - N.A. N.A.

ACM Symposium on Cloud Computing 2022

(SoCC22)

N X X X

Outline

* Motivation and overview
» Design
e Abstraction primitives
* Global resource management
* Dynamic task assignment
* Lazy data placement
« Spatial accelerator sharing
* Automatic stub generation

e Evaluation

e Conclusions

ACM Symposium on Cloud Computing 2022

Abstraction primitives

v Goal: Hide accelerator types from applications

Arax Application e Arax uses three main primitives

ACM Symposium on Cloud Computing 2022

Abstraction primitives

v Goal: Hide accelerator types from applications

Arax Application

)o@

* Arax uses three main primitives

1.

Tasks (D): hide accelerator-specific information
* Representindividual kernels and data transfers
* Fine-grainin the range of milliseconds

ACM Symposium on Cloud Computing 2022

Abstraction primitives

Arax Application

BB
B®

H)eee)

v Goal: Hide accelerator types from applications

* Arax uses three main primitives

1. Tasks((): hide accelerator-specific information
* Representindividual kernels and data transfers
* Fine-grainin the range of milliseconds

2. Buffers(®): hide accelerator memory
* Opaque identifiers that represent task input/output data
* Usedto keep track of data dependencies in Arax

ACM Symposium on Cloud Computing 2022

Abstraction primitives

v Goal: Hide accelerator types from applications

Arax Application e Arax uses three main primitives

TE® [! Tasks (D): hide accelerator-specific information
* Representindividual kernels and data transfers
(Tr»B® @ @ * Fine-grainin the range of milliseconds

2. Buffers(®): hide accelerator memory
* Opaque identifiers that represent task input/output data
* Usedto keep track of data dependencies in Arax

3. Task Queues (E): express task order
e Arax ensures in-order executionin each queue
« Applications can allocate several queues for concurrency

ACM Symposium on Cloud Computing 2022

Global resource management across applications

— : — v Goal: Optimize accelerator use across applications
Client 1 Client2 [+ ClientN '
Arax App |)| Arax App Arax App ||y * Arax uses a shared runtime process for all apps
~ ' i i > i = * Each applicationrunsin a separate address space
@ @ @ @ @ g * Theruntime(server)has a global view of apps & accelerators
D @@ @ @ & o
i | | I Arax uses shared memory for communication
« Task and buffer synchronization - Mutexes/Spin locks
Shared runtime (Server) T Allocation of in-transit buffers > Reference counters
\1 X \ 1 « Tracking of datalocation > Metadata per buffer

NVIDIA GPU| | Intel FPGA | | AMD GPU

ACM Symposium on Cloud Computing 2022

Dynamic task assignment at runtime

v Goal: Adaptation to application Joad change

\,

- -
,,,,,,,

x

~— =

- =
,,,,,,,

~— =

[Client 1 Client 2 Client N
Arax App Arax App Arax App
B 2 ¥ ¥
@ @
@ @
)/l | Vol Server 1

!

p—

« Arax moves all task management to the server
» Select accelerator, transfer data, issue kernel, manage memory

e Applicationsonly issue tasks

S

3
--------------------------- j\\ » Arax performs late task assignment
ey S Native: Assignment - [ssue = Execution

» Arax: Issue = Assignment = Execution

e Arax server

NVIDIA GPU

Intel FPGA

(®)
'4} _§- % * Hold kernels per accelerator = Kernel reqgistry
- § § * |dentifies appropriate accelerator = Policies
1 B * Handles thousands of tasks & queues - Multi-threaded
AMD GPU « Maintains task order - Mapping tasks to streams/cmd queues

ACM Symposium on Cloud Computing 2022

Lazy data placement

Client

Arax Application

A

()
o

Jahe] 'wwogj—/
/

Server

1. No transfer

\
GPU ® D| |FPGA

v Goal: Flexibility in task placement

» Prepare data for task execution |azily

1. Same accelerator 2 No transfer

ACM Symposium on Cloud Computing 2022

Lazy data placement

v . e
Client Goal: Flexibility in task placement

Arax Application

» Prepare data for task execution |azily

O
@ % 1. Same accelerator 2 No transfer
3
(T)| N 2. Stagingarea - Data copy(HostToDevice)
<
D
@ = 3. Otheraccelerator = Data transfer(DeviceToDevice)
Server \
2. Data copy
- .

sPu (| |FPcA @

3. Data transfer

ACM Symposium on Cloud Computing 2022

Spatial sharing

v" Goal: Collocate tasks from different apps on the same accelerator

* Each accelerator has a mechanism for spatial sharing
 GPUs - streams
 FPGAs - multi-kernel bitstreams and command queues

 Arax unifies and hides these mechanisms
* Reconfigures FPGAs depending on concurrently executing kernels
« Uses asingle CUDA context for all streams in each NVIDIA GPU

ACM Symposium on Cloud Computing 2022

Automatic stub generation

4 Client "\ v Goal: Reduce porting effort
“¢ TensorFlow QCaffe * To modify apps for Arax(we target CUDA)
W « To add anew accelerator and its kernels under Arax
\ {araxcal &/ Arax provides tools to generate client & server stubs
© ~ x « Client stubs translate CUDA to Arax calls
@ }ip g « Server stubs are wrappers for existing accelerator kernels
; ' Most CUDA calls translate to a single Arax call that invokes kernels

Server * Reality is more complicated - fat binaries
stub

* In CUDA, host and kernel code are included in a single binary
« Araxtools extract automatically kernels offline for loading in server

NVIDIA GPU| | Intel FPGA

 We successfully run TensorFlow+Keras, Caffe
« With tasks executing on CPU, GPU, FPGA

ACM Symposium on Cloud Computing 2022

Outline

* Motivation and overview
* Design
e Abstraction primitives
* Global resource management
* Dynamic task assignment
* Lazy data placement
« Spatial accelerator sharing
* Automatic stub generation

 Evaluation

e Conclusions

ACM Symposium on Cloud Computing 2022

Testbed

* Two server configurations with different accelerator types
1. NVIDIA GPU, AMD GPU, and Intel FPGA
2. TwoRTX 2080 NVIDIA GPUs

* Microbenchmarks and real-world applications
* Rodinia heterogenous benchmarks suite
« Caffe deep learning framework
* TensorFlow+Keras machine learning framework

* We port applications to Arax once
 Arax transparently manages accelerators in each configuration
 Applications execute unmodified with different resources

ACM Symposium on Cloud Computing 2022

Use of multiple and heterogeneous accelerators

* Rodinia on multiple accelerators of the same and different types
e Transparently, no application modifications

4
. B LavaMD [Gaussian [0 Particle
()]
\q; 3
£
)
c 2
e,
5
o1
i

0 []

1xnvidia 1xnvidia-2str 1xaltera 2xnvidia altera+nvidia | altera+nvidia+amd

Ixaccelerator

2xaccelerators Sxaccelerators

ACM Symposium on Cloud Computing 2022

Spatial sharing

* Rodinia and Caffe sharing a single accelerator (NVIDIA, FPGA, AMD)
« Several mixes of microbenchmarks with and without Caffe
« Comparable performance to native spatial sharing mechanisms

1800 [0 CUDA(MPS) W Arax B — 60000 1 OpenCL W Arax 6000 O ROCm_ MW Arax

~ 1500 '@ 50000 = 5000

g 1200 g 40000 — £ 4000

S 900 S 30000 —m S 3000

g 600 ‘gzoooo g 2000

¢ 300 $ 10000 g 1000

L 0 D. [1m | - 0 DI || || '-'>j 0 || || UI

ACM Symposium on Cloud Computing 2022

Elastic use of accelerators

« Dynamically vary the number of accelerators provided to an app

* Low-priority app starts first and then the high-priority

° i Tl ili Static
With elasticity all accelerators are utilized - GPUT —— [GPUY ——
» Small overhead to high-priority app IDLE
time
~ GPUI — GPU2 —
. 300 W High Priority l High Priority
qé Migration overhead
= Elastic
o
S 200 ~ GPUT GPU2 —
- time
100 ~ GPUI (GPU2 ——
Static Elastic v High Priority

ACM Symposium on Cloud Computing 2022

Overhead of Arax compared to native execution

* Arax overhead is mainly due to kernel computation-to-communication ratio
 High: up to 5% (BFS, Gaussian, Hotspot, LavaMD, etc.)
* Low:upto70% (NW, pathfinder)

 Forreal-world apps (Caffe, TensorFlow) the overhead is 5-28%

Rodinia Caffe TensorFlow+Keras
[JArax H OpenCL (1 CUDA m Arax (1 CUDA W Arax
12000 =6 — 300
L - L
v - < £
£ 8000 S 4 = 200
= E S
o = 9
S 4000 52 S 100
3] 5 X
Ll>j O L
Sl il el . B

BFS Gaussian Hotspot Googlenet Alexnet Caffenet CVv GNN RS

ACM Symposium on Cloud Computing 2022

Summary

* Arax is aruntime that decouples applications from accelerators using
* Dynamic task assignment
* Lazy data placement
» Spatial sharing
e Automatic stub generation

 We demonstrate Arax capabilities using
* Real-world applications: Caffe, TensorFlow, and microbenchmarks: Rodinia
 Multiple and heterogeneous accelerators: CPUs, GPUs, FPGAs

ACM Symposium on Cloud Computing 2022

Arax: A runtime for decoupling apps
from accelerators

Open-source: https://github.com/CARV-ICS-FORTH/arax

Ouestions?

Manos Pavlidakis
manospavl@ics.forth.gr

We thankfully acknowledge the support of the European Commission projects: HIPEAC (GA No 871174),
EUPILOT (GA No 101034126) and DEEP-SEA (GA No 955606)

