
Arax: A Runtime Framework for Decoupling
Applications from Heterogeneous Accelerators

1 Institute of Computer Science, Foundation for Research and Technology - Hellas, Greece
2 Computer Science Department, University of Crete, Greece

Manos Pavlidakis1,2, Stelios Mavridis1, Antony Chazapis1, Giorgos Vasiliadis1,
and Angelos Bilas1,2

2

• The use of accelerators increases
• Need for high performance at low energy

consumption

• Accelerator heterogeneity increases [1, 2]
• Different applications have different needs
• Inference → CPU, ASIC
• Training → GPU, FPGA

ACM Symposium on Cloud Computing 2022

Use of heterogeneous accelerators increases

0
10
20
30
40
50
60
70
80

2017 2019 2021 2023 2025 2027

B
ill

io
n

U
SD

Datacenter accelerator market size

CPU FPGA
GPU ASIC

Source: https://www.kbvresearch.com/data-center-

accelerator-market/

75 billion $

[1] DOE ASCR Basic Research Needs Workshop 2018, Extreme Heterogeneity
[2] HPCA 2018, Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective

3

• Unified programming models (HIP, SYCL, OpenCL) aim for write-once code
• They allow compiling the same source code for different accelerators

• Static accelerator selection at app initialization time for the whole execution
• External schedulers are static in a similar manner

• Static selection leads to accelerator under-utilization due to
• Reduced accelerator sharing
• Lack of adaptation during execution (elasticity)

• Dynamically selecting accelerators at runtime requires
• Significant effort for application writing
• Global scheduling decisions across applications

ACM Symposium on Cloud Computing 2022

Challenge: Transparent use of multiple/heterogeneous accelerators

Arax

4ACM Symposium on Cloud Computing 2022

• A runtime for managing multiple & heterogeneous accelerators within a server
• RPC-based approach to abstract accelerators
• Shared runtime for all applications running in a server

• Arax offers transparent mechanisms for
• Dynamic task assignment
• Lazy data placement
• Spatial accelerator sharing across applications
• Automatic stub generation

Why Arax?

5ACM Symposium on Cloud Computing 2022

Capabilities MPS
(NVIDIA)

StarPU
(Europar’09)

Gandiva
(OSDI’18)

DCUDA
(SoCC’19)

AvA
(ASPLOS’20)

Abstract accelerators - ✓ - - ✓

Shared runtime ✓ - ✓ ✓ -

Dynamic task assignment - - ✓

(app)
✓

(app)
-

Live data migration - - ✓ ✓ -

Spatial sharing ✓ - - - -

Automated porting N.A. - N.A. N.A. ✓

Why Arax?

5ACM Symposium on Cloud Computing 2022

Capabilities MPS
(NVIDIA)

StarPU
(Europar’09)

Gandiva
(OSDI’18)

DCUDA
(SoCC’19)

AvA
(ASPLOS’20)

Arax
(SoCC’22)

Abstract accelerators - ✓ - - ✓ ✓

Shared runtime ✓ - ✓ ✓ - ✓

Dynamic task assignment - - ✓

(app)
✓

(app)
- ✓

Live data migration - - ✓ ✓ - ✓

Spatial sharing ✓ - - - - ✓

Automated porting N.A. - N.A. N.A. ✓ ✓

ACM Symposium on Cloud Computing 2022

• Motivation and overview

• Design
• Abstraction primitives
• Global resource management
• Dynamic task assignment
• Lazy data placement
• Spatial accelerator sharing
• Automatic stub generation

• Evaluation

• Conclusions

Outline

Abstraction primitives

6ACM Symposium on Cloud Computing 2022

✓ Goal: Hide accelerator types from applications

• Arax uses three main primitivesArax Application

Abstraction primitives

6ACM Symposium on Cloud Computing 2022

✓ Goal: Hide accelerator types from applications

• Arax uses three main primitives

1. Tasks (): hide accelerator-specific information
• Represent individual kernels and data transfers
• Fine-grain in the range of milliseconds

Arax Application

TT

T

Abstraction primitives

6ACM Symposium on Cloud Computing 2022

✓ Goal: Hide accelerator types from applications

• Arax uses three main primitives

1. Tasks (): hide accelerator-specific information
• Represent individual kernels and data transfers
• Fine-grain in the range of milliseconds

2. Buffers (): hide accelerator memory
• Opaque identifiers that represent task input/output data
• Used to keep track of data dependencies in Arax

Arax Application

T

T

T

B B

B B

B

Abstraction primitives

6ACM Symposium on Cloud Computing 2022

✓ Goal: Hide accelerator types from applications

• Arax uses three main primitives

1. Tasks (): hide accelerator-specific information
• Represent individual kernels and data transfers
• Fine-grain in the range of milliseconds

2. Buffers (): hide accelerator memory
• Opaque identifiers that represent task input/output data
• Used to keep track of data dependencies in Arax

3. Task Queues (): express task order
• Arax ensures in-order execution in each queue
• Applications can allocate several queues for concurrency

Arax Application

T

T B B

B B T

T

T

T

T

B

Global resource management across applications

7ACM Symposium on Cloud Computing 2022

✓ Goal: Optimize accelerator use across applications

• Arax uses a shared runtime process for all apps
• Each application runs in a separate address space
• The runtime (server) has a global view of apps & accelerators

• Arax uses shared memory for communication
• Task and buffer synchronization →Mutexes/Spin locks
• Allocation of in-transit buffers → Reference counters
• Tracking of data location →Metadata per buffer

NVIDIA GPU Intel FPGA AMD GPU

Shared runtime (Server)

Client 1

Arax App

T
T

T
T

Client 2

Arax App

T
T

T
T

Client N

Arax App

T
T

...

C
om

m
. Layer

Dynamic task assignment at runtime

8ACM Symposium on Cloud Computing 2022

NVIDIA GPU Intel FPGA AMD GPU

Client 1

Arax App

T

T

T

T

Client 2

Arax App

T

T

T

T

Client N

Arax App

T

T

...

Server

Accelerator Selector

K K K KK

Stream
s/

cm
d

queues
C

om
m

. Layer

✓ Goal: Adaptation to application load change

• Arax moves all task management to the server
• Select accelerator, transfer data, issue kernel, manage memory
• Applications only issue tasks

• Arax performs late task assignment
• Native: Assignment→ Issue→ Execution
• Arax: Issue→ Assignment→ Execution

• Arax server
• Hold kernels per accelerator →Kernel registry
• Identifies appropriate accelerator → Policies
• Handles thousands of tasks & queues →Multi-threaded
• Maintains task order →Mapping tasks to streams/cmd queues

Lazy data placement

9ACM Symposium on Cloud Computing 2022

Client

Arax Application

C
om

m
. Layer

Server

GPU FPGA

T

T

TTT

T

✓ Goal: Flexibility in task placement

• Prepare data for task execution lazily

1. Same accelerator →No transfer

T

1. No transfer

D

Lazy data placement

10ACM Symposium on Cloud Computing 2022

Client

Arax Application

C
om

m
. Layer

Server

GPU FPGA

T

T

3. Data transfer

TTT

T D

✓ Goal: Flexibility in task placement

• Prepare data for task execution lazily

1. Same accelerator →No transfer

2. Staging area → Data copy (HostToDevice)

3. Other accelerator → Data transfer (DeviceToDevice)

T
D

2. Data copy

Spatial sharing

11ACM Symposium on Cloud Computing 2022

✓ Goal: Collocate tasks from different apps on the same accelerator

• Each accelerator has a mechanism for spatial sharing
• GPUs → streams
• FPGAs →multi-kernel bitstreams and command queues

• Arax unifies and hides these mechanisms
• Reconfigures FPGAs depending on concurrently executing kernels
• Uses a single CUDA context for all streams in each NVIDIA GPU

Automatic stub generation

12ACM Symposium on Cloud Computing 2022

✓ Goal: Reduce porting effort
• To modify apps for Arax (we target CUDA)
• To add a new accelerator and its kernels under Arax

• Arax provides tools to generate client & server stubs
• Client stubs translate CUDA to Arax calls
• Server stubs are wrappers for existing accelerator kernels
• Most CUDA calls translate to a single Arax call that invokes kernels

• Reality is more complicated → fat binaries
• In CUDA, host and kernel code are included in a single binary
• Arax tools extract automatically kernels offline for loading in server

• We successfully run TensorFlow+Keras, Caffe
• With tasks executing on CPU, GPU, FPGA

NVIDIA GPU Intel FPGA

Server

T
T

C
om

m
.

Layer

Client

Client stub

CaffeTensorFlow

Server
stub

CUDA call

Arax call

ACM Symposium on Cloud Computing 2022

• Motivation and overview

• Design
• Abstraction primitives
• Global resource management
• Dynamic task assignment
• Lazy data placement
• Spatial accelerator sharing
• Automatic stub generation

• Evaluation

• Conclusions

Outline

Testbed

ACM Symposium on Cloud Computing 2022

• Two server configurations with different accelerator types
1. NVIDIA GPU, AMD GPU, and Intel FPGA
2. Two RTX 2080 NVIDIA GPUs

• Microbenchmarks and real-world applications
• Rodinia heterogenous benchmarks suite
• Caffe deep learning framework
• TensorFlow+Keras machine learning framework

• We port applications to Arax once
• Arax transparently manages accelerators in each configuration
• Applications execute unmodified with different resources

13

ACM Symposium on Cloud Computing 2022

• Rodinia on multiple accelerators of the same and different types
• Transparently, no application modifications

0

1

2

3

4

1xnvidia 1xnvidia-2str 1xaltera 2xnvidia altera+nvidia altera+nvidia+amd

Ex
ec

u
ti

o
n

 t
im

e
(s

) LavaMD Gaussian Particle

14

Use of multiple and heterogeneous accelerators

1xaccelerator 2xaccelerators 3xaccelerators

Spatial sharing

ACM Symposium on Cloud Computing 2022

0

300

600

900

1200

1500

1800

Ex
ec

u
ti

o
n

 t
im

e
(s

)

CUDA(MPS) Arax

15

0

10000

20000

30000

40000

50000

60000

Ex
ec

u
ti

o
n

 t
im

e
(s

) OpenCL Arax

0
1000
2000
3000
4000
5000
6000

Ex
ec

u
ti

o
n

 t
im

e
(s

)

ROCm Arax

• Rodinia and Caffe sharing a single accelerator (NVIDIA, FPGA, AMD)
• Several mixes of microbenchmarks with and without Caffe
• Comparable performance to native spatial sharing mechanisms

Elastic use of accelerators

ACM Symposium on Cloud Computing 2022

100

200

300

Static Elastic

Ex
ec

u
ti

o
n

 t
im

e
(s

) High Priority

• Dynamically vary the number of accelerators provided to an app

• Low-priority app starts first and then the high-priority

• With elasticity all accelerators are utilized

• Small overhead to high-priority app
GPU1 GPU2

Low Priority

GPU2GPU1
Low Priority

time

Static

time

IDLE

16

High Priority

GPU1 GPU2
Low Priority

GPU2GPU1
Low Priority High Priority

Migration overhead

Elastic

Overhead of Arax compared to native execution

ACM Symposium on Cloud Computing 2022

0

2

4

6

Googlenet Alexnet Caffenet

Ex
ec

u
ti

o
n

 t
im

e
(h

o
u

rs
)

Caffe

CUDA Arax

0

100

200

300

CV GNN RS

Ex
ec

u
ti

o
n

 t
im

e
(s

)

TensorFlow+Keras

CUDA Arax

• Arax overhead is mainly due to kernel computation-to-communication ratio
• High: up to 5% (BFS, Gaussian, Hotspot, LavaMD, etc.)
• Low: up to 70% (NW, pathfinder)

• For real-world apps (Caffe, TensorFlow) the overhead is 5-28%

17

0

4000

8000

12000

BFS Gaussian Hotspot

Ex
ec

u
ti

o
n

 t
im

e
(s

)

Rodinia

Arax OpenCL

Summary

ACM Symposium on Cloud Computing 2022

• Arax is a runtime that decouples applications from accelerators using
• Dynamic task assignment
• Lazy data placement
• Spatial sharing
• Automatic stub generation

• We demonstrate Arax capabilities using
• Real-world applications: Caffe, TensorFlow, and microbenchmarks: Rodinia
• Multiple and heterogeneous accelerators: CPUs, GPUs, FPGAs

18

25

Arax: A runtime for decoupling apps from accelerators
Open-source: https://github.com/CARV-ICS-FORTH/arax

Manos Pavlidakis
manospavl@ics.forth.gr

Questions?

Arax: A runtime for decoupling apps
from accelerators

We thankfully acknowledge the support of the European Commission projects: HiPEAC (GA No 871174),
EUPILOT (GA No 101034126) and DEEP-SEA (GA No 955606)

