
Programming Languages for
Accelerators

1 Institute of Computer Science, Foundation for Research and Technology - Hellas, Greece
2 Computer Science Department, University of Crete, Greece

manospavl@ics.forth.gr

Manos Pavlidakis1,2

Programming languages for accelerators EuroHPC 2022

What is an accelerator?

2

• A device that performs some functions more efficiently than general-purpose CPU
• Due to massive pallelism
• GPUs are perfect for Vector Add

• General Purpose Graphic Processing Unit (NVIDIA, AMD)

• Field-Programmable Gate Array (Xilinx, Intel Altera)

• Application-Specific Integrated Circuit
• TPU: Tensor Processing Unit (Google)

Programming Guide :: CUDA Toolkit Documentation (nvidia.com)

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

3

How we program accelerators?

Programming languages for accelerators EuroHPC 2022

Well known programming languages

4

• CUDA NVIDIA GPUs

• HIP:
• ROcM AMD GPUs
• CUDA NVIDIA GPUs

• oneAPI/SYCL  Heterogeneous accelerators

5

CUDA: Compute Unified Device Architecture

Programming languages for accelerators EuroHPC 2022

What is CUDA?

6

• CUDA
• Based on industry-standard C/C++
• Small set of extensions to enable heterogeneous programming  Kernel code
• APIs to manage devices  Transfers, Allocations etc.

Programming languages for accelerators EuroHPC 2022

Terminology

7

• Host: The CPU and its memory

• Device: The GPU/Accelerator and its memory

Host Device

Programming languages for accelerators EuroHPC 2022

Host and Device code

8

Executed by multiple
CUDA Threads

Executed by one
Host Thread

Device code

(CUDA kernel)

Host code

1

2

3

4

9

CUDA by an example

Programming languages for accelerators EuroHPC 2022

Add two integers with CUDA

10

• A simple kernel to add two integers

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

• __global__ is a CUDA C/C++ keyword meaning:
• add() will execute on the device
• add() will be called from the host

Programming languages for accelerators EuroHPC 2022

Add two integers with CUDA

11

• Note that we use pointers for the variables

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

• add() runs on the device, so a, b and c must point to device memory

• We need to allocate memory on the GPU for a, b, c

Programming languages for accelerators EuroHPC 2022

Memory Management

12

• Host and device memory are separate entities

• Device pointers point to GPU memory
• May be passed to/from host code

• Host pointers point to CPU memory
• May be passed to/from device code

• Simple CUDA API for handling device memory
• cudaMalloc(), cudaFree(), cudaMemcpy()
• Similar to the C equivalents malloc(), free(), memcpy()

Programming languages for accelerators EuroHPC 2022

Add two integers: main()

13

int main(void) {

int a, b, c; // host copies of a, b, c

int *d_a, *d_b, *d_c; // device copies of a, b, c

int size = sizeof(int);

// Allocate space for device copies of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Setup input values

a = 2;

b = 7;

Programming languages for accelerators EuroHPC 2022

Add two integers: main()

14

// Copy inputs to device

cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<1,1>>>(d_a, d_b, d_c);

// Copy results back to host

cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

// Free device memory

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

} // End of main()

Programming languages for accelerators EuroHPC 2022

Use parallelism

15

• Performance gain of GPUs is based on massive parallelism
• CPUs have several cores (i.e. hundreds)
• GPUs have many cores (i.e. thousands)

• How we run the add() kernel on many cores?
add<<< 1, 1 >>>();

add<<< N, 1 >>>();

• Instead of executing add() once, execute N times in parallel!

Programming languages for accelerators EuroHPC 2022

Vector addition on the Device

16

• With add() running in parallel we can do vector addition

• Each parallel invocation of add() is referred to as a Block

• The set of Blocks is referred to as a Grid

• Each invocation can refer to its block index using blockIdx.x

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

• By using blockIdx.x to index into the array, each block handles a different index

Programming languages for accelerators EuroHPC 2022

Sequential Vector Addition using C++

17

int main(void) {

int a, b, c;

int size = sizeof(int);

// Allocate and initialize a, b, c

a = (int*)malloc(size); random_ints(a, N);

b = (int*)malloc(size); random_ints(b, N);

c = (int*)malloc(size);

for (int i =0; i<size; i++) // Add arrays

c[i] = a[i] + b[i];
free(a); free(b); free(c);

return 0;

}

Programming languages for accelerators EuroHPC 2022

Vector addition with 4 blocks

18

• If we want to create 4 parallel blocks

• We will call the kernel from host with N=4

add<<< 4, 1 >>>(…);

• On the device the kernel code

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x]; }

c[0]=a[0]+b[0]

c[1]=a[1]+b[1]

c[2]=a[2]+b[2]

c[3]=a[3]+b[3]

for (int i =0; i<size; i++)

c[i] = a[i] + b[i];

Programming languages for accelerators EuroHPC 2022

Vector addition main()

19

#define N 4

int main(void) {

int *a, *b, *c; // host copies of a, b, c

int *d_a, *d_b, *d_c; // device copies of a, b, c

int size = N * sizeof (int);

// Alloc space for device copies of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Alloc space for host copies of a, b, c, and setup random input values

a = (int *)malloc(size); random_ints(a, N);

b = (int *)malloc(size); random_ints(b, N);

c = (int *)malloc(size);

Programming languages for accelerators EuroHPC 2022

Vector addition main()

20

// Copy inputs to device

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU with N blocks

add<<<N,1>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Free device and host memory

free(a); free(b); free(c);

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

}

Programming languages for accelerators EuroHPC 2022

More parallelism using CUDA cores

21

• NVIDIA GPUs consists of:
• Streaming Multiprocessors (SM)
• An SM consists of CUDA cores

Hardware

Programming languages for accelerators EuroHPC 2022

More parallelism using CUDA cores

22

• NVIDIA GPUs consists of:
• Streaming Multiprocessors (SM)
• An SM consists of CUDA cores
• A CUDA core is like a thin processor

• A GPU has:
• Hundreds of SMs (e.g. A100 GPU has 128)
• Thousand CUDA cores (e.g. A100 GPU has 7000)

Hardware

Programming languages for accelerators EuroHPC 2022

More parallelism using CUDA cores

23

• NVIDIA GPUs consists of:
• Streaming Multiprocessors (SM)
• An SM consists of CUDA cores
• A CUDA core is like a thin processor

• A GPU has:
• Hundreds of SMs (e.g. A100 GPU has 128)
• Thousand CUDA cores (e.g. A100 GPU has 7000)

• In our example we use only Blocks
• A Block is assigned to an SM
• Blocks in the same SM execute concurrently!

• Not in parallel!!

• If we have 4xSMs only 4xBlocks run in parallel

• Why not use CUDA cores !

Hardware

Programming languages for accelerators EuroHPC 2022

CUDA Threads  CUDA cores

24

• A Block can be split into parallel Threads
• Threads in the same block can cooperate
• Threads have unique ids (i.e. threadId.x)

Programming languages for accelerators EuroHPC 2022

CUDA Threads  CUDA cores

25

• A Block can be split into parallel Threads
• Threads in the same block can cooperate
• Threads have unique ids (i.e. threadId.x)

Hardware• Threads are assigned to CUDA cores

Programming languages for accelerators EuroHPC 2022

CUDA Threads  CUDA cores

26

• A Block can be split into parallel Threads
• Threads in the same block can cooperate
• Threads have unique ids (i.e. threadId.x)

Hardware• Threads are assigned to CUDA cores
• We have to modify kernel code to use Threads, instead

of blocks:
__global__ void add(int *a, int *b, int *c) {

c[threadId.x] = a[threadIdx.x] + b[threadIdx.x]; }

• We use the threadId.x instead of blockIdx.x

• In main we have to change the kernel call:
add<<<1,N>>>(...);

Programming languages for accelerators EuroHPC 2022

CUDA Threads  CUDA cores

27

• A Block can be split into parallel Threads
• Threads in the same block can cooperate
• Threads have unique ids (i.e. threadId.x)

Hardware
• Threads are assigned to CUDA cores
• We have to modify kernel code to use Threads, instead

of blocks:
__global__ void add(int *a, int *b, int *c) {

c[threadId.x] = a[threadIdx.x] + b[threadIdx.x]; }

• We use the threadId.x instead of blockIdx.x

• In main we have to change the kernel call:
add<<<1,N>>>(...);

• Now we call the kernel with 1xBlock and NxThreads

Programming languages for accelerators EuroHPC 2022

Combining Threads & Blocks

28

• Until now we have seen parallel vector addition using
• Many Blocks with one Thread each
• One Block with many Threads

• Now let’s get more parallelism (= performance) by using
• Many Blocks with many Threads

• But before let’s discuss data indexing

Programming languages for accelerators EuroHPC 2022

Indexing Arrays with Blocks & threads

29

• With M threads per block, a unique index for each thread is given by:
• int index = threadIdx.x + blockIdx.x * M;
• M = Number of threads per block or block size
• Use the built-in variable blockDim.x for threads per block
• int index = threadIdx.x + blockIdx.x * blockDim.x;

0 1 2 ... 7 0 1 2 ... 7 0 1 2 ... 7 0 1 2 ... 7

blockid.x = 0 blockid.x = 1 blockid.x = 2 blockid.x = 3

threadid.x threadid.x threadid.x threadid.x

• Consider indexing an array with one element per thread (8 threads/block)

Programming languages for accelerators EuroHPC 2022

Vector addition with Blocks & Threads

30

Host code Kernel code

8 x Blocks, 256 x Threads/Block = 2048

Array size: 2048

add <<< 8, 256 >>> (…);

Block size: 256

Programming languages for accelerators EuroHPC 2022

Handling arbitrary vector sizes

31

• Typical problems are not friendly multiples of blockDim.x (e.g. N = 5000)

Array size: 5000

Avoid accessing beyond the end of arrays

Update kernel launch

Programming languages for accelerators EuroHPC 2022

Compile a CUDA program

32

• nvcc is the CUDA compiler

• With CUDA both Host and Device code can be in the same file
• With suffix “.cu”

• nvcc separates source code into host and device components
• Device functions (e.g. add()) processed by NVIDIA compiler
• Host functions (e.g. main()) processed by standard host compiler (g++/gcc)

• Compile vector addition example:
• nvcc vectorAdd.cu –o vectorAdd

• Run:
• ./vectorAdd

33

Thank you

Manos Pavlidakis
manospavl@ics.forth.gr

Questions?

Find the example in: https://github.com/manospavlidakis/VectorAdditionCUDA.git

Programming languages for accelerators EuroHPC 2022

A simple example

34

• Which thread element will operate on the blue cell?

0 1 2 ... 7 8 9 10 ... 15 16 17 18 ... 23 24 25 25 ... 31

Programming languages for accelerators EuroHPC 2022

A simple example

35

• Which thread element will operate on the blue cell?

0 1 2 ... 7 8 9 10 ... 15 16 17 18 ... 23 24 25 25 ... 31

• With M threads per block = 8
• int index = threadIdx.x + blockIdx.x * M = 7 + 2 * 8 = 23;

0 1 2 ... 7 0 1 2 ... 7 0 1 2 ... 7 0 1 2 ... 7

blockid.x = 2

threadid.x = 7

blockid.x = 0 blockid.x = 1 blockid.x = 2 blockid.x = 3

