

Why accelerators?

Manos Pavlidakis^{1,2}

manospavl@ics.forth.gr

Antonis Chazapis¹

chazapis@ics.forth.gr

¹ Institute of Computer Science, Foundation for Research and Technology - Hellas, Greece ² Computer Science Department, University of Crete, Greece

What is an accelerator?

- A device that performs some functions more efficiently than general-purpose CPU
- CPUs have to be good at all functions
- E.G. GPUs are perfect for M.M.

Programming Guide :: CUDA Toolkit Documentation (nvidia.com)

Typical accelerators

- GPGPUs General Purpose Graphic Processing Unit (NVIDIA, AMD)
- FPGA: Field-programmable gate array (Xilinx, Intel Altera)
- ASIC: Application-Specific Integrated Circuit
 - TPU: Tensor Processing Unit (Google)
- Accelerators fit perfectly to accelerate compute intensive applications as:
 - Financial
 - Face detection
 - Autonomous driving
 - Language translation
 - Genomics

Why accelerators are better than CPUs?

- Accelerators can process data several orders of magnitude faster than CPUs
 - Due to massive parallelism

CPU	GPU		
Central Processing Unit	Graphics Processing Unit		
Several Cores	Many Cores		
Complex/Larger cores	Simpler/smaller cores		
Low latency	High throughput		
Good for serial processing	Good for parallel processing		
Good for almost all operations	Perfect for some operations		

How to select the optimal accelerator?

Application type	Processing speed	Processing/ Watt	Training	Inference
Speech processing	++	++	GPU, ASIC	CPU, ASIC
Face detection	++	++	GPU, FPGA	CPU, ASIC
Financial risk stratification	++	+	GPU, FPGA	CPU
Route planning	+	+	GPU	CPU
Dynamic pricing	++	+	GPU	CPU, ASIC
Autonomous driving	++	++	ASIC	GPU, ASIC, FPGA

https://www.mckinsey.com/industries/semiconductors/our-insights/artificial-intelligence-hardware-new-opportunities-for-semiconductor-companies#

Preferred architectures are shifting!

https://www.mckinsey.com/industries/semiconductors/our-insights/artificial-intelligence-hardware-new-opportunities-for-semiconductor-companies#

How to use an accelerator?

- Use the accelerator programming language and libraries
 - CUDA \rightarrow NVIDIA GPUs, OpenCL \rightarrow Intel Altera FPGAs
 - cuDNN, cuBLAS \rightarrow NVIDIA GPUs, cIBLAS \rightarrow Intel Altera FPGAs
- Generic Programming languages
 - OneAPI, OpenCL
- High level languages
 - Python, Java
 - For instance CUDA offers plugins for high-level languages (PyCUDA, JCUDA)
- Frameworks
 - TensorFlow, PyTorch, MatLab, Caffe, Wolfram Language, mxnet etc.
 - Have implementations for different accelerator types
 - Have simple and flexible APIs that simplify their use (e.g. Keras)

Caffe2

Chainer

Caffe

Machine learning stack

JETSON XAVIER NX

MLPerf Data-center benchmarks

https://inaccel.com/cpu-gpu-or-fpga-performance-evaluation-of-cloud-computing-platforms-for-machine-learning-training/

Thank you

Questions?

Manos Pavlidakis manospavl@ics.forth.gr